-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_uncert.py
260 lines (201 loc) · 10.2 KB
/
train_uncert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import time
# os.environ["CUDA_VISIBLE_DEVICES"] = "7"
import torch
from torch.nn import functional as F
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.utils.data import DataLoader
from utils.nyu_data import get_nyuDataset
from utils.kitti_data import get_kittiDataset
# from models.endecoder import DepthEstimationModule
from models.endecoder import MCDropoutDepthEstimationModule, MultiHeadDepthEstimationModule, NoiseInjectedDepthEstimationModule
from models.losses import RegLoss, ProbLoss, UncertLoss, AutoLossWeight
from utils.options import Options
import utils.options as o
import utils.utils as u
from einops import rearrange
from itertools import chain
import random
n_iter = 0
UNCERTAINTY_MODELS = {
'mc_dropout': MCDropoutDepthEstimationModule,
'multi_head': MultiHeadDepthEstimationModule,
'noise': NoiseInjectedDepthEstimationModule,
'predictive': None,
}
def main(opts):
# logging
os.makedirs(opts.log_path, exist_ok=True)
opts.model_name = u.default_name(opts)
writers = {}
for mode in ['train', 'val']:
writers[mode] = SummaryWriter(os.path.join(opts.log_path, opts.model_name, mode))
u.backup_opts(opts, os.path.join(opts.log_path, opts.model_name))
u.backup_code(os.path.join(opts.log_path, opts.model_name))
# opts.reg_mode = 'lin_cls'
# print(f'Enforceing reg_mode as {opts.reg_mode}')
assert not (opts.prob_supervision == 'none' and opts.reg_supervision == 'none'), 'need supervision'
opts.max_depth = o.DEFAULTS['max_depth'][opts.dataset]
generator = UNCERTAINTY_MODELS[opts.aleatoric_uncertainty](opts.encoder, opts.decoder, opts.reg_mode, 128, 128, (1e-3, opts.max_depth), False)
# gen_state_dict = torch.load('ckpt/0407_lin_res_reg_l1+cwl1/model_epoch1.pth', map_location='cpu')
# gen_state_dict = {k.replace('module.', ''): v for k, v in gen_state_dict.items()}
# generator.load_state_dict(gen_state_dict)
generator.cuda()
generator_params = generator.parameters()
loss_weight = AutoLossWeight('reg', 'prob', 'uncert').cuda()
loss_weight_params = loss_weight.parameters()
optimizer = torch.optim.Adam(chain(generator_params, loss_weight_params), opts.lr_gen)
# data loading
if opts.dataset == 'nyu':
train_set, test_set = get_nyuDataset(opts.nyu_data_path)
elif opts.dataset == 'kitti':
train_set, test_set = get_kittiDataset(opts)
train_loader = DataLoader(train_set, batch_size=opts.batch_size, shuffle=True, num_workers=opts.workers,
pin_memory=True)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False, num_workers=1, pin_memory=False)
for epoch in range(opts.epochs):
train(opts, train_loader, generator, optimizer, writers, loss_weight)
# val(opts, test_loader, generator, epoch, writers)
# save
os.makedirs(os.path.join(opts.save_path, opts.model_name), exist_ok=True)
torch.save(generator.state_dict(), os.path.join(opts.save_path, opts.model_name, 'model_epoch{}.pth'.format(epoch)))
print('saved state dict')
u.adjust_lr(optimizer, opts.lr_gen, epoch, opts.decay_rate, opts.decay_epoch)
def train(opts, train_loader, model, optimizer, writers, loss_weight):
global n_iter
batch_time = u.AverageMeter()
data_time = u.AverageMeter()
losses = u.AverageMeter(precision=4)
loss_reg_fn = RegLoss(opts.reg_supervision)
loss_prob_fn = ProbLoss(opts.prob_supervision)
loss_uncert_fn = UncertLoss(opts.uncert_supervision)
end = time.time()
for i, inputs in enumerate(train_loader):
tgt_img, tgt_depth = inputs['image'], inputs['depth']
tgt_orj = tgt_img
tgt_depth = Variable(tgt_depth).cuda()
data_time.update(time.time() - end)
tgt_img = Variable(tgt_img).cuda()
# if opts.encoder == 'swin':
# tgt_img = F.interpolate(tgt_img, size=(384, 384), align_corners=True, mode='bilinear')
j = random.randint(0, 2)
outputs = model(tgt_img)
pred_prob = F.interpolate(outputs['prob'][j], size=tgt_depth.shape[-2:], align_corners=True, mode='bilinear')
pred_depth = F.interpolate(outputs['depth'][j], size=tgt_depth.shape[-2:], align_corners=True, mode='bilinear')
entropy = outputs['entropy'][j]
entropy = F.interpolate(entropy, size=tgt_depth.shape[-2:], align_corners=True, mode='bilinear')
uncertainty = outputs['uncert'][j]
uncertainty = F.interpolate(uncertainty, size=tgt_depth.shape[-2:], align_corners=True, mode='bilinear')
if opts.reg_mode in ['lin_cls', 'log_cls', 'ada_cls']:
pred_prob = F.interpolate(outputs['prob'][j], size=tgt_depth.shape[-2:], align_corners=True, mode='bilinear')
scales = outputs['scales'].cuda()
# compute loss
weight = tgt_depth > 1e-3 if opts.dataset == 'kitti' else 1
tgt_depth = torch.clamp(tgt_depth, opts.min_depth, opts.max_depth)
if opts.dataset == 'kitti' :#and opts.reg_supervision == 'regression_silog_loss':
mask = tgt_depth.squeeze(1) > 1e-3
pred_prob = rearrange(pred_prob, 'b d h w -> d b h w')
pred_prob = pred_prob[..., mask]
tgt_depth_ = tgt_depth.squeeze(1)[mask]
pred_depth_ = pred_depth.squeeze(1)[mask]
uncertainty_ = uncertainty.squeeze(1)[mask]
weight = 1
else:
tgt_depth_ = tgt_depth
pred_depth_ = pred_depth
uncertainty_ = uncertainty
l1_error = torch.abs(pred_depth - tgt_depth) * (tgt_depth > 1e-3).float()
reg_loss = loss_reg_fn(pred_depth=pred_depth_, gt=tgt_depth_, weight=weight)
prob_loss = loss_prob_fn(pred_prob=pred_prob, scales=scales, gt=tgt_depth_, weight=weight) if opts.prob_supervision != 'none' else 0
uncert_loss = loss_uncert_fn(uncertainty=uncertainty_, pred_depth=pred_depth_, gt=tgt_depth_, weight=weight) if opts.uncert_supervision != 'none' else 0
entropy_loss = outputs['entropy'].sum().item() * 1e-4 if 'entropy' in outputs.keys() else 0
# loss = reg_loss + prob_loss + uncert_loss
loss = loss_weight(reg=reg_loss, prob=prob_loss, uncert=uncert_loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# compute depth errors, for monitoring training status
errors = calc_error(opts, pred_depth, tgt_depth)
outputs['l1_error'] = l1_error
losses.update(loss.item(), opts.batch_size)
errors['loss/reg'] = reg_loss.item() if isinstance(reg_loss, torch.Tensor) else reg_loss
errors['loss/prob'] = prob_loss.item() if isinstance(prob_loss, torch.Tensor) else prob_loss
errors['loss/uncert'] = uncert_loss.item() if isinstance(uncert_loss, torch.Tensor) else uncert_loss
errors['loss/entropy'] = entropy_loss
errors['loss/total'] = loss.item()
errors['loss/reg_weight'] = torch.exp(-loss_weight.weights['reg']).item()
errors['loss/prob_weight'] = torch.exp(-loss_weight.weights['prob']).item()
errors['loss/uncert_weight'] = torch.exp(-loss_weight.weights['uncert']).item()
batch_time.update(time.time() - end)
end = time.time()
if i % opts.print_freq == 0:
print('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
log(opts, writers, 'train', tgt_orj, tgt_depth, outputs, errors)
n_iter += 1
@torch.no_grad()
def val(opts, val_loader, model, epoch, writers):
model.eval()
tgt_depth_s = []
outputs_s = []
for i, inputs in enumerate(val_loader):
tgt_img, tgt_depth = inputs['image'], inputs['depth']
tgt_img = Variable(tgt_img).cuda()
tgt_depth = Variable(tgt_depth).cuda()
### average multiple predictions
outputs = model(tgt_img)['depth'].mean(0)
if opts.dataset == 'kitti':
if inputs['has_valid_depth']:
tgt_depth = rearrange(tgt_depth, 'b h w c -> b c h w')
outputs_s.append(outputs.cpu())
tgt_depth_s.append(tgt_depth.cpu())
else:
outputs_s.append(outputs.cpu())
tgt_depth_s.append(tgt_depth.cpu())
outputs_s = torch.cat(outputs_s)
tgt_depth_s = torch.cat(tgt_depth_s)
outputs_s = F.interpolate(outputs_s, tgt_depth_s.shape[-2:], mode='bilinear', align_corners=True)
errors = calc_error(opts, outputs_s, tgt_depth_s)
if writers != None:
log(opts, writers, 'val', None, None, None, errors)
print('epoch {} '.format(epoch), end='|')
for name, error in errors.items():
print(name, ':', error, end=' | ')
print()
def calc_error(opts, outputs, tgt_depth):
depth_errors = {}
pred_depth = torch.clamp(outputs, opts.min_depth, opts.max_depth)
if opts.dataset == 'kitti':
depth_errors = u.compute_depth_errors(tgt_depth[tgt_depth>1e-3], pred_depth[tgt_depth>1e-3], depth_errors)
else:
depth_errors = u.compute_depth_errors(tgt_depth, pred_depth, depth_errors)
return depth_errors
def log(opts, writers, mode, img, gt, outputs, errors):
global n_iter
writer = writers[mode]
for l, v in errors.items():
writer.add_scalar('{}'.format(l), v, n_iter)
if mode == 'train':
pred_depth = outputs['depth'].mean(0)
l1_error = outputs['l1_error']
uncertainty = outputs['uncert'].mean(0)
for i in range(min(4, opts.batch_size)): # frames
writer.add_image("color/{}".format(i), u.unnormalize_image(img[i].data), n_iter)
writer.add_image("gt/{}".format(i), u.normalize_image(gt[i].data), n_iter)
writer.add_image("pred/{}".format(i),
u.normalize_image(pred_depth[i].data), n_iter)
writer.add_image("l1_error/{}".format(i),
u.normalize_image(l1_error[i].data), n_iter)
writer.add_image("uncertainty/{}".format(i),
u.normalize_image(uncertainty[i].data), n_iter)
options = Options()
opts = options.parse()
if __name__ == '__main__':
if opts.phone_notify:
try:
main(opts)
except Exception as e:
print(e)
u.send_notice('notice_phone', opts.ifttt_key, '')
else:
main(opts)