-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
430 lines (332 loc) · 17.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
'''
the trainer function
'''
import os
import time
import torch
from torch import nn, optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
import models as model
import numpy as np
import LoadData
import util
import PIL.Image as Image
def train(hpar_dict):
# region: hyper-parameters for the model
# noise channel
Nz = hpar_dict['Nz']
# steps gap to update discriminator
D_GAP_FR = hpar_dict['D_GAP_FR']
D_GAP_ER = hpar_dict['D_GAP_ER']
# steps gap for saving images
IMG_SAVE_GAP = hpar_dict['IMG_SAVE_GAP']
# gaps to save parameters (epochs)
PAR_SAVE_GAP = hpar_dict['PAR_SAVE_GAP']
# validation gap
VAL_GAP = hpar_dict['VAL_GAP']
# batch size
BS = hpar_dict['BS']
# training epochs
epoch = hpar_dict['epoch']
# face recognition class number
FR_cls_num = hpar_dict['FR_cls_num']
# learning rate
LR_D_FR = hpar_dict['LR_D_FR']
LR_D_ER = hpar_dict['LR_D_ER']
LR_G_FR = hpar_dict['LR_G_FR']
LR_G_ER = hpar_dict['LR_G_ER']
# weights to balance the loss of generator or discriminator
H_G_FR_f = hpar_dict['H_G_FR_f']
H_G_ER_f = hpar_dict['H_G_ER_f']
H_G_FR_PER = hpar_dict['H_G_FR_PER']
H_G_ER_PER = hpar_dict['H_G_ER_PER']
H_G_CON_FR = hpar_dict['H_G_CON_FR']
H_G_CON_ER = hpar_dict['H_G_CON_ER']
H_D_FR_r = hpar_dict['H_D_FR_r']
H_D_FR_f = hpar_dict['H_D_FR_f']
H_D_ER_r = hpar_dict['H_D_ER_r']
H_D_ER_f = hpar_dict['H_D_ER_f']
# flag to indicate whether to generate grayscale images
FLAG_GEN_GRAYIMG = hpar_dict['FLAG_GEN_GRAYIMG']
# dataset
ER_DB = hpar_dict['ER_DB']
FR_DB = hpar_dict['FR_DB']
save_dir = hpar_dict['save_dir']
# directory to save images
img_dir = os.path.join(save_dir, 'img')
if not os.path.exists(img_dir):
os.makedirs(img_dir)
# directory to save parameters
par_dir = os.path.join(save_dir, 'par')
if not os.path.exists(par_dir):
os.makedirs(par_dir)
TRAIN_FLAG = hpar_dict['train']
# endregion
# region: construct dataloaders for training
# construct face dataset's dataloader.
if FR_DB == 'CASIA':
# load the npz file that stores images' data (dir, label)
face_data_dir = './Dataset/CASIA_WebFace/casia_data_example.npz'
face_img_dir_list, face_img_lab_list = LoadData.getFaceData(face_data_dir, FR_cls_num)
# the root directory of where images are stored (in your local machine)
face_root_dir = './Dataset/CASIA_WebFace/img/'
if ER_DB == 'RAF':
ER_cls_num = 7 # the class of expressions inn RAF-DB
acc_max = 0.1
# npy file that stores the data of RAF-DB (img name, labels)
expr_data_dir = './Dataset/RAF/RAF_example_label.npy'
expr_root_dir = './Dataset/RAF/img/'
lab_dir = expr_data_dir
# the dataset instance for testing
dataset_test = LoadData.RAFDataset(expr_root_dir, lab_dir, RGB_flag=not FLAG_GEN_GRAYIMG, train=False)
# dataset instance for training
dataset_train = LoadData.DualTrainDatasetRAF(face_root_dir, face_img_dir_list, face_img_lab_list, expr_data_dir, expr_root_dir, GRAY_flag=FLAG_GEN_GRAYIMG)
# dataloader for training, which contains two datasets
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BS, shuffle=True, num_workers=2)
# dataloader for testing, which only contains the expression dataset
expr_tt_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BS, shuffle=False, num_workers=2)
# endregion
# region: module instantiate
# instantiate Generator
Gen = model.Gen(clsn_ER=ER_cls_num, Nz=Nz, GRAY=FLAG_GEN_GRAYIMG, Nb=6)
# instantiate face discriminator
Dis_FR = model.Dis(GRAY=FLAG_GEN_GRAYIMG, cls_num=FR_cls_num + 1)
# instantiate expression discriminator
Dis_ER = model.Dis(GRAY=FLAG_GEN_GRAYIMG, cls_num=ER_cls_num)
# instantiate Expression Clssification Module (M_ER)
Dis_ER_val = model.Dis()
Dis_ER_val.enc = Gen.enc_ER
Dis_ER_val.fc = Gen.fc_ER
# push model into GPU
Gen.to(hpar_dict['device'])
Dis_FR.to(hpar_dict['device'])
Dis_ER.to(hpar_dict['device'])
Dis_ER_val.to(hpar_dict['device'])
# endregion
# region optimizer definition
# parameters of the generator
par_list_G_joint = [{'params': Gen.dec.parameters(), 'lr': LR_G_ER},
{'params': Gen.enc_FR.parameters(), 'lr': LR_G_FR},
{'params': Gen.enc_ER.parameters(), 'lr': LR_G_ER}
]
# parameters of the Expression Recognition Module
par_list_G_ER_fc = [{'params': Gen.fc_ER.parameters(), 'lr': LR_D_ER},
]
# parameters of the two discriminators
par_list_D_FR = [{'params': Dis_FR.parameters(), 'lr': LR_D_FR},
]
par_list_D_ER = [{'params': Dis_ER.parameters(), 'lr': LR_D_ER},
]
optG_joint = optim.Adam(par_list_G_joint)
optG_ER_fc = optim.Adam(par_list_G_ER_fc)
optD_FR = optim.Adam(par_list_D_FR)
optD_ER = optim.Adam(par_list_D_ER)
# endregion
# criterion for loss
CE = nn.CrossEntropyLoss()
MSE = nn.MSELoss()
L1_loss = nn.L1Loss()
if not TRAIN_FLAG:
# region: load pretrained model and do forward steps
# pretrained model dir
pre_root_dir = './Dataset/examples'
par_Enc_FR_dir = os.path.join(pre_root_dir, 'Enc_FR_G.pkl')
par_Enc_ER_dir = os.path.join(pre_root_dir, 'Enc_ER_G.pkl')
par_dec_dir = os.path.join(pre_root_dir, 'dec.pkl')
par_fc_ER_dir = os.path.join(pre_root_dir, 'fc_ER_G.pkl')
par_Dis_ER_dir = os.path.join(pre_root_dir, 'Dis_ER.pkl')
# load parameters
print('loading pretrained models......')
util.del_extra_keys(par_Enc_FR_dir)
Gen.enc_FR.load_state_dict(util.del_extra_keys(par_Enc_FR_dir))
Gen.enc_ER.load_state_dict(util.del_extra_keys(par_Enc_ER_dir))
Gen.dec.load_state_dict(util.del_extra_keys(par_dec_dir))
Gen.fc_ER.load_state_dict(util.del_extra_keys(par_fc_ER_dir))
Dis_ER_val.enc.load_state_dict(util.del_extra_keys(par_Enc_ER_dir))
Dis_ER_val.fc.load_state_dict(util.del_extra_keys(par_fc_ER_dir))
Dis_ER.load_state_dict(util.del_extra_keys(par_Dis_ER_dir))
# load example images for validation demo
face_img_dir = '{}/face.jpg'.format(pre_root_dir)
expression_img_dir = '{}/expression.jpg'.format(pre_root_dir)
faceimg = util.preprocess_img(face_img_dir, hpar_dict['device'])
exprimg = util.preprocess_img(expression_img_dir, hpar_dict['device'])
with torch.no_grad():
Gen.eval()
gen_img = Gen.gen_img(faceimg, exprimg, device=hpar_dict['device'])
gen_img_copy = gen_img.detach()
gen_img = gen_img.squeeze().cpu().data.numpy()
img_PIL = Image.fromarray((gen_img * 255).astype(np.uint8))
img_PIL.save('{}/generated_example.png'.format(pre_root_dir))
# validation using M_ER
Dis_ER_val.eval()
util.Val_acc_single(gen_img_copy, Dis_ER_val,device=hpar_dict['device'], name='M_ER')
# validation using discriminator
Dis_ER.eval()
util.Val_acc_single(gen_img_copy, Dis_ER, device=hpar_dict['device'], name='Expr Dis')
# endregion
else:
# buffer to store validation accuracy (Expression Classification Module)
tt_acc_mat = []
tt_ce_mat = []
# buffer to store validation accuracy (Expression discriminator)
tt_acc_mat_ExpDis = []
tt_ce_mat_ExpDis = []
# start training
for e in range(1, epoch + 1):
print('---- training ----')
# the number of steps that an epoch goes
step_total = train_loader.__len__()
t_start = time.time()
print('the %d-th training epoch' % (e))
# set training mode
Gen.train()
Dis_ER.train()
Dis_FR.train()
for step, (batch_FR_x_r, batch_FR_y_r, batch_ER_x_r, batch_ER_y_r) in enumerate(train_loader):
# region batch data preparation
# batch_FR_x_r: real batch data for Face Recognition
# batch_FR_y_r: real batch labels for Face Recognition
# batch_ER_x_r: real batch data for expression Recognition
# batch_ER_y_r: real batch labels for expression Recognition
# labels for fake images
batch_FR_y_f = FR_cls_num * torch.ones(len(batch_FR_y_r)).long()
# convert all tensors to the form of torch.Variables
batch_FR_x_r = Variable(batch_FR_x_r).to(hpar_dict['device'])
batch_FR_y_r = Variable(batch_FR_y_r).long().to(hpar_dict['device'])
batch_ER_x_r = Variable(batch_ER_x_r).to(hpar_dict['device'])
batch_ER_y_r = Variable(batch_ER_y_r).long().to(hpar_dict['device'])
batch_FR_y_f = Variable(batch_FR_y_f).long().to(hpar_dict['device'])
# endregion
# region forward step
# go through the discriminators
batch_FR_Dfea_r, batch_FR_Dp_r = Dis_FR(batch_FR_x_r)
batch_FR_Dfea_r = Variable(batch_FR_Dfea_r.data, requires_grad=False)
batch_ER_Dfea_r, batch_ER_Dp_r = Dis_ER(batch_ER_x_r)
batch_ER_Dfea_r = Variable(batch_ER_Dfea_r.data, requires_grad=False)
# loss of face discriminator (with respect to real samples)
loss_D_FR_r = CE(batch_FR_Dp_r, batch_FR_y_r)
# loss of expression discriminator (with respect to real samples)
loss_D_ER_r = CE(batch_ER_Dp_r, batch_ER_y_r)
# generat images
batch_x_f = Gen.gen_img(batch_FR_x_r, batch_ER_x_r, device=hpar_dict['device'])
batch_ER_Gfea_r = Variable(Gen.fea_ER.data, requires_grad=False)
# region: update Expression Recognition Module
optG_ER_fc.zero_grad()
err_G_ER_r = CE(Gen.result_ER, batch_ER_y_r)
err_G_ER_r.backward(retain_graph=True)
optG_ER_fc.step()
# endregion
# endregion
# region update discriminators
# clear gradient buffer
optD_FR.zero_grad()
optD_ER.zero_grad()
if step % D_GAP_FR == 0:
batch_FR_Dfea_f, batch_FR_Dp_f = Dis_FR(batch_x_f.detach())
# loss of face discriminator (with respect to fake samples)
loss_D_FR_f = CE(batch_FR_Dp_f, batch_FR_y_f)
# full loss of face discriminator
loss_D_FR = H_D_FR_r * loss_D_FR_r + H_D_FR_f * loss_D_FR_f
loss_D_FR.backward()
optD_FR.step()
if step % D_GAP_ER == 0:
# loss of expression discriminator
loss_D_ER = H_D_ER_r * loss_D_ER_r
loss_D_ER.backward()
optD_ER.step()
# endregion
# region update generator
optG_joint.zero_grad()
# get the predicted results on fake samples
batch_FR_Dfea_f, batch_FR_Dp_f = Dis_FR(batch_x_f)
batch_ER_Dfea_f, batch_ER_Dp_f = Dis_ER(batch_x_f)
err_G_FR_f = CE(batch_FR_Dp_f, batch_FR_y_r) # Equ.6 first part
err_G_ER_f = CE(batch_ER_Dp_f, batch_ER_y_r) # Equ.6 second part
err_G_FR_PER = MSE(batch_FR_Dfea_f, batch_FR_Dfea_r) # Equ.8
# consistency loss (Fig.3 upper part): face branch input: the generated image, expression branch input: the original face image, expected output: same as the original face image
batch_x_f_FR = Gen.gen_img(batch_x_f, batch_FR_x_r, device=hpar_dict['device'])
# consistency loss (Fig.3 lower part): face branch input: the original expression image, expression branch: the generated image, expected output: same as the original expression image
batch_x_f_ER = Gen.gen_img(batch_ER_x_r, batch_x_f, device=hpar_dict['device'])
# expression perceptual error (unused)
batch_ER_Gfea_f = Variable(Gen.fea_ER.data).to(hpar_dict['device'])
err_G_ER_PER = MSE(batch_ER_Gfea_f, batch_ER_Gfea_r)
err_G_con_FR = L1_loss(batch_x_f_FR, batch_FR_x_r)
err_G_con_ER = L1_loss(batch_x_f_ER, batch_ER_x_r)
err_G_con = H_G_CON_FR * err_G_con_FR + H_G_CON_ER * err_G_con_ER # Equ.7
loss_G = H_G_FR_f * err_G_FR_f + H_G_ER_f * err_G_ER_f + \
H_G_FR_PER * err_G_FR_PER + H_G_ER_PER * err_G_ER_PER + err_G_con
loss_G.backward()
optG_joint.step()
# endregion
if step % 5 == 0:
print('the current information of the model:')
print('%d / %d' % (step, step_total))
print('the loss of G (total): %f' % (loss_G.cpu().data))
print('the loss of G (face): %f' % (err_G_FR_f.cpu().data))
print('the loss of G (expression): %f' % (err_G_ER_f.cpu().data))
print('the loss of G (face-per): %f' % (err_G_FR_PER.cpu().data))
print('the loss of G (expr-per): %f' % (err_G_ER_PER.cpu().data))
print('the loss of G (consistency): %f' % (err_G_con.cpu().data))
print('the loss of G (FR-cons): %f' % (err_G_con_FR.cpu().data))
print('the loss of G (ER-cons): %f' % (err_G_con_ER.cpu().data))
print('------------------------------------------------------------')
print('the loss of D (face-total): %f' % (loss_D_FR.cpu().data))
print('the loss of D (face-real): %f' % (loss_D_FR_r.cpu().data))
print('the loss of D (face-fake): %f' % (loss_D_FR_f.cpu().data))
print('the loss of D (expression): %f' % (loss_D_ER.cpu().data))
# save the generated images
if step % IMG_SAVE_GAP == 0:
# combine five images of real face, real expression and fake images
comb_img = util.combinefig_dualcon(batch_FR_x_r.cpu().data.numpy(),
batch_ER_x_r.cpu().data.numpy(),
batch_x_f.cpu().data.numpy(),
batch_x_f_FR.cpu().data.numpy(),
batch_x_f_ER.cpu().data.numpy())
# save figures
comb_img = Image.fromarray((comb_img * 255).astype(np.uint8))
comb_img.save(os.path.join(img_dir, str(e) + '_' + str(step) + '.jpg'))
t_end = time.time()
print('an epoch last for %f seconds\n' % (t_end - t_start))
# region validation
if e % VAL_GAP == 0:
Dis_ER_val.eval()
tt_acc, tt_ce = util.Val_acc(expr_tt_loader, Dis_ER_val, CE, device=hpar_dict['device'])
tt_acc_mat.append(tt_acc)
tt_ce_mat.append(tt_ce)
if tt_acc > acc_max:
acc_max = tt_acc
torch.save(Gen.enc_ER.state_dict(), os.path.join(par_dir, 'Enc_ER_G.pkl'))
torch.save(Gen.enc_FR.state_dict(), os.path.join(par_dir, 'Enc_FR_G.pkl'))
torch.save(Gen.fc_ER.state_dict(), os.path.join(par_dir, 'fc_ER_G.pkl'))
torch.save(Gen.dec.state_dict(), os.path.join(par_dir, 'dec.pkl'))
torch.save(Dis_FR.state_dict(), os.path.join(par_dir, 'Dis_FR.pkl'))
torch.save(Dis_ER.state_dict(), os.path.join(par_dir, 'Dis_ER.pkl'))
print('\n')
print('the %d-th epoch' % (e))
print('accuracy is : %f' % (tt_acc))
print('validation cross enntropy is : %f' % (tt_ce))
print('now the best accuracy is %f\n' % (np.max(tt_acc_mat)))
# validation using discriminator
Dis_ER.eval()
tt_acc_ExpDis, tt_ce_ExpDis = util.Val_acc(expr_tt_loader, Dis_ER, CE, device=hpar_dict['device'])
tt_acc_mat_ExpDis.append(tt_acc_ExpDis)
tt_ce_mat_ExpDis.append(tt_ce_ExpDis)
print('testing using discriminator:')
print('accuracy is : %f' % (tt_acc_ExpDis))
print('testing cross enntropy is : %f' % (tt_ce_ExpDis))
print('now the best accuracy is %f\n' % (np.max(tt_acc_mat_ExpDis)))
if e % PAR_SAVE_GAP == 0:
torch.save(Gen.enc_ER.state_dict(), os.path.join(par_dir, 'Enc_ER_G_' + str(e) +'.pkl'))
torch.save(Gen.enc_FR.state_dict(), os.path.join(par_dir, 'Enc_FR_G_' + str(e) +'.pkl'))
torch.save(Gen.fc_ER.state_dict(), os.path.join(par_dir, 'fc_ER_G_' + str(e) +'.pkl'))
torch.save(Gen.dec.state_dict(), os.path.join(par_dir, 'dec_' + str(e) +'.pkl'))
torch.save(Dis_FR.state_dict(), os.path.join(par_dir, 'Dis_FR_' + str(e) +'.pkl'))
torch.save(Dis_ER.state_dict(), os.path.join(par_dir, 'Dis_ER_' + str(e) +'.pkl'))
# endregion
print('end')
np.savez(os.path.join(save_dir, 'val_data.npz'), tt_acc_mat=tt_acc_mat, tt_ce_mat=tt_ce_mat,
tt_acc_mat_ExpDis=tt_acc_mat_ExpDis, tt_ce_mat_ExpDis=tt_ce_mat_ExpDis)
return tt_acc_mat, tt_ce_mat