-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdataset.py
97 lines (85 loc) · 3.51 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import os.path
import open3d
import numpy as np
import time
from tqdm import tqdm
import json
import numpy
import torch.utils.data as data
from input_preparation import *
class SunDataset(data.Dataset):
def __init__(self,
root,
split='train',
num_patches=32, # num of patches per point cloud. which is also the batch size of the input.
num_points_per_patch=1024,
data_augmentation=True,
on_the_fly=True):
self.root = root
self.split = split
self.data_augmentation = data_augmentation
self.num_patches = num_patches
self.num_points_per_patch = num_points_per_patch
self.on_the_fly = on_the_fly
# Support the whole 3Dmatch dataset
with open(os.path.join(root, f'scene_list_{split}.txt')) as f:
scene_list = f.readlines()
self.ids_list = []
self.scene_list = []
for scene in scene_list:
ids = []
scene = scene.replace("\n", "")
for seq in os.listdir(os.path.join(self.root, scene)):
if not seq.startswith('seq'):
continue
scene_path = os.path.join(self.root, scene + f'/{seq}')
ids += [scene + f"/{seq}/" + str(filename.split(".")[0]) for filename in os.listdir(scene_path)]
self.ids_list += sorted(list(set(ids)))
self.scene_list.append(scene)
# if split == 'test':
# self.ids_list = self.ids_list[0:10000]
# if split == 'train':
# self.ids_list = self.ids_list[0:50000]
def __getitem__(self, index):
id = self.ids_list[index]
if self.on_the_fly:
try:
return get_local_patches_on_the_fly(self.root, id, self.num_patches, self.num_points_per_patch), id
except Exception as ex:
template = f"An exception of type {type(ex)} occurred for {id}, Argument: \n {ex.args!r} "
print(template)
return self.__getitem__(0)
ind = np.random.choice(range(2048), self.num_patches, replace=False)
patches = np.load(os.path.join(self.root, self.ids_list[index] + ".npy"))
return patches[ind], self.ids_list[index]
# if self.split == 'train':
# patches = np.load(os.path.join(self.root, self.ids_list[index] + ".npy"))
# return patches
# else:
# patches = np.load(os.path.join(self.root, self.ids_list[index] + ".npy"))
# pcd = open3d.read_point_cloud(os.path.join(self.root, self.ids_list[index] + ".pcd"))
# return patches, [pcd]
def __len__(self):
return len(self.ids_list)
if __name__ == '__main__':
datapath = "/data/3DMatch/whole"
d = SunDataset(root=datapath, split='test', on_the_fly=True)
print(len(d.ids_list))
# print(d.scene_list)
start_time = time.time()
for i in range(len(d.ids_list)):
patches, patch_id = d[i]
if i % 100 == 0:
print(f"{i} : {time.time() - start_time} s")
print(f"Test set On the fly: {time.time() - start_time}")
datapath = "/data/3DMatch/whole"
d = SunDataset(root=datapath, split='train', on_the_fly=True)
print(len(d.ids_list))
# print(d.scene_list)
start_time = time.time()
for i in range(len(d.ids_list)):
patches, id = d[i]
if i % 100 == 0:
print(f"{i}: {time.time() - start_time} s")
print(f"Training set On the fly: {time.time() - start_time}")