forked from rawar/ix-tut-yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
98 lines (83 loc) · 3.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : train.py
# Author : YunYang1994
# Created date: 2019-07-18 09:18:54
# Description :
#
#================================================================
import os
import time
import shutil
import numpy as np
import tensorflow as tf
import core.utils as utils
from tqdm import tqdm
from core.dataset import Dataset
from core.yolov3 import YOLOv3, decode, compute_loss
from core.config import cfg
trainset = Dataset('train')
logdir = "./ix-tut-yolov3-data/logs"
steps_per_epoch = len(trainset)
global_steps = tf.Variable(1, trainable=False, dtype=tf.int64)
warmup_steps = cfg.TRAIN.WARMUP_EPOCHS * steps_per_epoch
total_steps = cfg.TRAIN.EPOCHS * steps_per_epoch
input_tensor = tf.keras.layers.Input([416, 416, 3])
conv_tensors = YOLOv3(input_tensor)
output_tensors = []
for i, conv_tensor in enumerate(conv_tensors):
pred_tensor = decode(conv_tensor, i)
output_tensors.append(conv_tensor)
output_tensors.append(pred_tensor)
model = tf.keras.Model(input_tensor, output_tensors)
optimizer = tf.keras.optimizers.Adam()
if os.path.exists(logdir): shutil.rmtree(logdir)
writer = tf.summary.create_file_writer(logdir)
def train_step(image_data, target):
with tf.GradientTape() as tape:
pred_result = model(image_data, training=True)
giou_loss=conf_loss=prob_loss=0
# optimizing process
for i in range(3):
conv, pred = pred_result[i*2], pred_result[i*2+1]
loss_items = compute_loss(pred, conv, *target[i], i)
giou_loss += loss_items[0]
conf_loss += loss_items[1]
prob_loss += loss_items[2]
total_loss = giou_loss + conf_loss + prob_loss
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
tf.print("=> STEP %4d/%4d lr: %.6f giou_loss: %4.2f conf_loss: %4.2f "
"prob_loss: %4.2f total_loss: %4.2f" %(global_steps, total_steps, optimizer.lr.numpy(),
giou_loss, conf_loss,
prob_loss, total_loss))
# update learning rate
global_steps.assign_add(1)
if global_steps < warmup_steps:
lr = global_steps / warmup_steps *cfg.TRAIN.LR_INIT
else:
lr = cfg.TRAIN.LR_END + 0.5 * (cfg.TRAIN.LR_INIT - cfg.TRAIN.LR_END) * (
(1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi))
)
optimizer.lr.assign(lr.numpy())
# writing summary data
with writer.as_default():
tf.summary.scalar("lr", optimizer.lr, step=global_steps)
tf.summary.scalar("loss/total_loss", total_loss, step=global_steps)
tf.summary.scalar("loss/giou_loss", giou_loss, step=global_steps)
tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps)
tf.summary.scalar("loss/prob_loss", prob_loss, step=global_steps)
writer.flush()
print(f"train {total_steps} steps with {cfg.TRAIN.EPOCHS} epochs...")
for epoch in range(cfg.TRAIN.EPOCHS):
print(f"train {epoch}...")
for image_data, target in trainset:
train_step(image_data, target)
model_json = model.to_json()
with open("starwars_yolov3.json", "w") as json_file:
json_file.write(model_json)
model.save_weights("./starwars_yolov3")