-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmodels.py
204 lines (162 loc) · 7.15 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import random
import pytorch_lightning as pl
from x_transformers import *
from x_transformers.autoregressive_wrapper import *
from timm.models.swin_transformer import SwinTransformer
import utils
class SwinTransformerOCR(pl.LightningModule):
def __init__(self, cfg, tokenizer):
super().__init__()
self.cfg = cfg
self.tokenizer = tokenizer
self.encoder = CustomSwinTransformer( img_size=(cfg.height, cfg.width),
patch_size=cfg.patch_size,
in_chans=cfg.channels,
num_classes=0,
window_size=cfg.window_size,
embed_dim=cfg.encoder_dim,
depths=cfg.encoder_depth,
num_heads=cfg.encoder_heads
)
self.decoder = CustomARWrapper(
TransformerWrapper(
num_tokens=len(tokenizer),
max_seq_len=cfg.max_seq_len,
attn_layers=Decoder(
dim=cfg.decoder_dim,
depth=cfg.decoder_depth,
heads=cfg.decoder_heads,
**cfg.decoder_cfg
)),
pad_value=cfg.pad_token
)
self.bos_token = cfg.bos_token
self.eos_token = cfg.eos_token
self.max_seq_len = cfg.max_seq_len
self.temperature = cfg.temperature
def configure_optimizers(self):
optimizer = getattr(torch.optim, self.cfg.optimizer)
optimizer = optimizer(self.parameters(), lr=float(self.cfg.lr))
if not self.cfg.scheduler:
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1)
scheduler = {
'scheduler': scheduler, 'interval': "epoch", "name": "learning rate"
}
return [optimizer], [scheduler]
elif hasattr(torch.optim.lr_scheduler, self.cfg.scheduler):
scheduler = getattr(torch.optim.lr_scheduler, self.cfg.scheduler)
elif hasattr(utils, self.cfg.scheduler):
scheduler = getattr(utils, self.cfg.scheduler)
else:
raise ModuleNotFoundError
scheduler = {
'scheduler': scheduler(optimizer, **self.cfg.scheduler_param),
'interval': self.cfg.scheduler_interval,
'name': "learning rate"
}
return [optimizer], [scheduler]
def forward(self, x):
'''
x: (B, C, W, H)
labels: (B, S)
# B : batch size
# W : image width
# H : image height
# S : source sequence length
# E : hidden size
# V : vocab size
'''
encoded = self.encoder(x)
dec = self.decoder.generate(torch.LongTensor([self.bos_token]*len(x))[:, None].to(x.device), self.max_seq_len,
eos_token=self.eos_token, context=encoded, temperature=self.temperature)
return dec
def training_step(self, batch, batch_num):
x, y = batch
tgt_seq, tgt_mask = y
encoded = self.encoder(x)
loss = self.decoder(tgt_seq, mask=tgt_mask, context=encoded)
self.log("train_loss", loss)
return {'loss': loss}
def validation_step(self, batch, batch_num):
x, y = batch
tgt_seq, tgt_mask = y
encoded = self.encoder(x)
loss = self.decoder(tgt_seq, mask=tgt_mask, context=encoded)
dec = self.decoder.generate((torch.ones(x.size(0),1)*self.bos_token).long().to(x.device), self.max_seq_len,
eos_token=self.eos_token, context=encoded, temperature=self.temperature)
gt = self.tokenizer.decode(tgt_seq)
pred = self.tokenizer.decode(dec)
assert len(gt) == len(pred)
acc = sum([1 if gt[i] == pred[i] else 0 for i in range(len(gt))]) / x.size(0)
return {'val_loss': loss,
'results' : {
'gt' : gt,
'pred' : pred
},
'acc': acc
}
def validation_epoch_end(self, outputs):
val_loss = sum([x['val_loss'] for x in outputs]) / len(outputs)
acc = sum([x['acc'] for x in outputs]) / len(outputs)
wrong_cases = []
for output in outputs:
for i in range(len(output['results']['gt'])):
gt = output['results']['gt'][i]
pred = output['results']['pred'][i]
if gt != pred:
wrong_cases.append("|gt:{}/pred:{}|".format(gt, pred))
wrong_cases = random.sample(wrong_cases, min(len(wrong_cases), self.cfg.batch_size//2))
self.log('val_loss', val_loss)
self.log('accuracy', acc)
# custom text logging
self.logger.log_text("wrong_case", "___".join(wrong_cases), self.global_step)
@torch.no_grad()
def predict(self, image):
dec = self(image)
pred = self.tokenizer.decode(dec)
return pred
class CustomSwinTransformer(SwinTransformer):
def __init__(self, img_size=224, *cfg, **kwcfg):
super(CustomSwinTransformer, self).__init__(img_size=img_size, *cfg, **kwcfg)
self.height, self.width = img_size
def forward_features(self, x):
x = self.patch_embed(x)
x = self.pos_drop(x)
x = self.layers(x)
x = self.norm(x) # B L C
return x
class CustomARWrapper(AutoregressiveWrapper):
def __init__(self, *cfg, **kwcfg):
super(CustomARWrapper, self).__init__(*cfg, **kwcfg)
@torch.no_grad()
def generate(self, start_tokens, seq_len, eos_token=None, temperature=1., filter_logits_fn=top_k, filter_thres=0.9, **kwcfg):
was_training = self.net.training
num_dims = len(start_tokens.shape)
if num_dims == 1:
start_tokens = start_tokens[None, :]
b, t = start_tokens.shape
self.net.eval()
out = start_tokens
mask = kwcfg.pop('mask', None)
if mask is None:
mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
for _ in range(seq_len):
x = out[:, -self.max_seq_len:]
mask = mask[:, -self.max_seq_len:]
logits = self.net(x, mask=mask, **kwcfg)[:, -1, :]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
elif filter_logits_fn is entmax:
probs = entmax(logits / temperature, alpha=ENTMAX_ALPHA, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
mask = F.pad(mask, (0, 1), value=True)
if eos_token is not None and (torch.cumsum(out == eos_token, 1)[:, -1] >= 1).all():
break
out = out[:, t:]
if num_dims == 1:
out = out.squeeze(0)
self.net.train(was_training)
return out