-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbilateral_filter.m
61 lines (42 loc) · 1.17 KB
/
bilateral_filter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function r_img = bilateral_filter(img, sigma_s, sigma, boundary_method, s_size)
if ~exist('boundary_method', 'var')
boundary_method = 'replicate';
end
if isinteger(img) == 1, img = single(img) / 255; end
[h w d] = size(img);
if d == 3
C = makecform('srgb2lab');
lab = single( applycform(double(img), C) );
sigma = sigma * 100;
else
lab = img;
sigma = sigma * sqrt(d);
end
if exist('s_size', 'var')
fr = s_size;
else
fr = ceil(sigma_s*3);
end
p_img = padarray(img, [fr fr], boundary_method);
p_lab = padarray(lab, [fr fr], boundary_method);
u = fr+1; b = u+h-1;
l = fr+1; r = l+w-1;
r_img = zeros(h, w, d, 'single');
w_sum = zeros(h, w, 'single');
spatial_weight = fspecial('gaussian', 2*fr+1, sigma_s);
ss = sigma * sigma;
for y = -fr:fr
for x = -fr:fr
w_s = spatial_weight(y+fr+1, x+fr+1);
n_img = p_img(u+y:b+y, l+x:r+x, :);
n_lab = p_lab(u+y:b+y, l+x:r+x, :);
f_diff = lab - n_lab;
f_dist = sum(f_diff.^2, 3);
w_f = exp(-0.5 * (f_dist / ss));
w_t = w_s .* w_f;
r_img = r_img + n_img .* repmat(w_t, [1 1 d]);
w_sum = w_sum + w_t;
end
end
r_img = r_img ./ repmat(w_sum, [1 1 d]);
end