-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCTRNN.cpp
282 lines (239 loc) · 6.6 KB
/
CTRNN.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// ************************************************************
// A class for continuous-time recurrent neural networks
//
// RDB
// 8/94 Created
// 12/98 Optimized integration
// 1/08 Added table-based fast sigmoid w/ linear interpolation
//
// To Do
// 1. Could optimize a bit further by making StepSize
// a CTRNN parameter and prescaling RTaus and
// by providing versions of EulerStep and RK4Step
// that ignore gains, but it's not clear that the
// few percent speed increase is really worth it.
// ************************************************************
#include "CTRNN.h"
#include "random.h"
#include <stdlib.h>
// A fast sigmoid implementation using a table w/ linear interpolation
#ifdef FAST_SIGMOID
int SigTableInitFlag = 0;
double SigTab[SigTabSize];
void InitSigmoidTable(void)
{
if (!SigTableInitFlag) {
double DeltaX = SigTabRange/(SigTabSize-1);
for (int i = 0; i <= SigTabSize-1; i++)
SigTab[i] = sigma(i * DeltaX);
SigTableInitFlag = 1;
}
}
double fastsigmoid(double x)
{
if (x >= SigTabRange) return 1.0;
if (x < 0) return 1.0 - fastsigmoid(-x);
double id;
double frac = modf(x*(SigTabSize-1)/SigTabRange, &id);
int i = (int)id;
double y1 = SigTab[i], y2 = SigTab[i+1];
return y1 + (y2 - y1) * frac;
}
#endif
// ****************************
// Constructors and Destructors
// ****************************
// The constructor
CTRNN::CTRNN(int newsize)
{
SetCircuitSize(newsize);
#ifdef FAST_SIGMOID
InitSigmoidTable();
#endif
}
// The destructor
CTRNN::~CTRNN()
{
SetCircuitSize(0);
}
// *********
// Utilities
// *********
// Resize a circuit.
void CTRNN::SetCircuitSize(int newsize)
{
size = newsize;
states.SetBounds(1,size);
states.FillContents(0.0);
outputs.SetBounds(1,size);
outputs.FillContents(0.0);
biases.SetBounds(1,size);
biases.FillContents(0.0);
gains.SetBounds(1,size);
gains.FillContents(1.0);
taus.SetBounds(1,size);
taus.FillContents(1.0);
Rtaus.SetBounds(1,size);
Rtaus.FillContents(1.0);
externalinputs.SetBounds(1,size);
externalinputs.FillContents(0.0);
weights.SetBounds(1,size,1,size);
weights.FillContents(0.0);
TempStates.SetBounds(1,size);
TempOutputs.SetBounds(1,size);
k1.SetBounds(1,size);
k2.SetBounds(1,size);
k3.SetBounds(1,size);
k4.SetBounds(1,size);
}
// *******
// Control
// *******
// Randomize the states or outputs of a circuit.
void CTRNN::RandomizeCircuitState(double lb, double ub)
{
for (int i = 1; i <= size; i++)
SetNeuronState(i, UniformRandom(lb, ub));
}
void CTRNN::RandomizeCircuitState(double lb, double ub, RandomState &rs)
{
for (int i = 1; i <= size; i++)
SetNeuronState(i, rs.UniformRandom(lb, ub));
}
void CTRNN::RandomizeCircuitOutput(double lb, double ub)
{
for (int i = 1; i <= size; i++)
SetNeuronOutput(i, UniformRandom(lb, ub));
}
void CTRNN::RandomizeCircuitOutput(double lb, double ub, RandomState &rs)
{
for (int i = 1; i <= size; i++)
SetNeuronOutput(i, rs.UniformRandom(lb, ub));
}
// Integrate a circuit one step using Euler integration.
void CTRNN::EulerStep(double stepsize)
{
// Update the state of all neurons.
for (int i = 1; i <= size; i++) {
double input = externalinputs[i];
for (int j = 1; j <= size; j++)
input += weights[j][i] * outputs[j];
states[i] += stepsize * Rtaus[i] * (input - states[i]);
}
// Update the outputs of all neurons.
for (int i = 1; i <= size; i++)
outputs[i] = sigmoid(gains[i] * (states[i] + biases[i]));
}
// Integrate a circuit one step using 4th-order Runge-Kutta.
void CTRNN::RK4Step(double stepsize)
{
int i,j;
double input;
// The first step.
for (i = 1; i <= size; i++) {
input = externalinputs[i];
for (j = 1; j <= size; j++)
input += weights[j][i] * outputs[j];
k1[i] = stepsize * Rtaus[i] * (input - states[i]);
TempStates[i] = states[i] + 0.5*k1[i];
TempOutputs[i] = sigmoid(gains[i]*(TempStates[i]+biases[i]));
}
// The second step.
for (i = 1; i <= size; i++) {
input = externalinputs[i];
for (j = 1; j <= size; j++)
input += weights[j][i] * TempOutputs[j];
k2[i] = stepsize * Rtaus[i] * (input - TempStates[i]);
TempStates[i] = states[i] + 0.5*k2[i];
}
for (i = 1; i <= size; i++)
TempOutputs[i] = sigmoid(gains[i]*(TempStates[i]+biases[i]));
// The third step.
for (i = 1; i <= size; i++) {
input = externalinputs[i];
for (j = 1; j <= size; j++)
input += weights[j][i] * TempOutputs[j];
k3[i] = stepsize * Rtaus[i] * (input - TempStates[i]);
TempStates[i] = states[i] + k3[i];
}
for (i = 1; i <= size; i++)
TempOutputs[i] = sigmoid(gains[i]*(TempStates[i]+biases[i]));
// The fourth step.
for (i = 1; i <= size; i++) {
input = externalinputs[i];
for (j = 1; j <= size; j++)
input += weights[j][i] * TempOutputs[j];
k4[i] = stepsize * Rtaus[i] * (input - TempStates[i]);
states[i] += (1.0/6.0)*k1[i] + (1.0/3.0)*k2[i] + (1.0/3.0)*k3[i] + (1.0/6.0)*k4[i];
outputs[i] = sigmoid(gains[i]*(states[i]+biases[i]));
}
}
// Set the biases of the CTRNN to their center-crossing values
void CTRNN::SetCenterCrossing(void)
{
double InputWeights, ThetaStar;
for (int i = 1; i <= CircuitSize(); i++) {
// Sum the input weights to this neuron
InputWeights = 0;
for (int j = 1; j <= CircuitSize(); j++)
InputWeights += ConnectionWeight(j, i);
// Compute the corresponding ThetaStar
ThetaStar = -InputWeights/2;
SetNeuronBias(i, ThetaStar);
}
}
// ****************
// Input and Output
// ****************
#include <iomanip>
ostream& operator<<(ostream& os, CTRNN& c)
{
// Set the precision
os << setprecision(32);
// Write the size
os << c.size << endl << endl;
// Write the time constants
for (int i = 1; i <= c.size; i++)
os << c.taus[i] << " ";
os << endl << endl;
// Write the biases
for (int i = 1; i <= c.size; i++)
os << c.biases[i] << " ";
os << endl << endl;
// Write the gains
for (int i = 1; i <= c.size; i++)
os << c.gains[i] << " ";
os << endl << endl;
// Write the weights
for (int i = 1; i <= c.size; i++) {
for (int j = 1; j <= c.size; j++)
os << c.weights[i][j] << " ";
os << endl;
}
// Return the ostream
return os;
}
istream& operator>>(istream& is, CTRNN& c)
{
// Read the size
int size;
is >> size;
c.SetCircuitSize(size);
// Read the time constants
for (int i = 1; i <= size; i++) {
is >> c.taus[i];
c.Rtaus[i] = 1/c.taus[i];
}
// Read the biases
for (int i = 1; i <= size; i++)
is >> c.biases[i];
// Read the gains
for (int i = 1; i <= size; i++)
is >> c.gains[i];
// Read the weights
for (int i = 1; i <= size; i++)
for (int j = 1; j <= size; j++)
is >> c.weights[i][j];
// Return the istream
return is;
}