-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTSearch.cpp
executable file
·998 lines (864 loc) · 29 KB
/
TSearch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
// *******************************************************************************
// Methods for the evolutionary search class TSearch
//
// RDB
// 1/99 - Created
// 5/07 - Added binary checkpoint files (with contributions from Chad Seys)
// 1/08 - Added multithreaded evaluation (with contributions from Chad Seys and Paul Williams)
//
// TO DO
// 1. Abstract TSearch over the type of individuals, so that more than just
// real vectors can be searched
// 2. Define specialized support (either a subclass of TSearch or of Individual)
// for evolving CTRNNs. Features might include support for setting parameter
// ranges, seeding w/ center-crossing, setting up symmetric circuits,
// automating search-to-CTRNN parameter mapping, etc.
// 3. Add support for co-evolution by allowing two search objects to
// interact with one another during evolution. Much of this can probably
// just be handled by making both search objects global and having each
// evaluation function refer to the population in the other object.
// However, the generations of the search objects must also be interleaved.
// For example, we could have another function that kept reseting MaxGens
// and calling ExecuteSearch for each object.
// *******************************************************************************
#include "TSearch.h"
#include <math.h>
#include <limits.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
// An out of memory handler for new
#include <new>
void OutOfMemoryHandler(void)
{
cerr << "Error: Out of memory!\n";
exit(0);
}
// *****************************
// Constructors and Destructors
// *****************************
// The constructor
TSearch::TSearch(int VSize, double (*EvalFn)(TVector<double> &, RandomState &))
{
// Install a default new handler if none is currently installed
new_handler OldHandler;
OldHandler = set_new_handler(OutOfMemoryHandler);
if (OldHandler != NULL) set_new_handler(OldHandler);
// Initialize internal state
SearchInitialized = 0;
// Initialize function pointers
EvaluationFunction = EvalFn;
BestActionFunction = NULL;
SearchTerminationFunction = NULL;
PopulationStatisticsDisplayFunction = NULL;
SearchResultsDisplayFunction = NULL;
// Initialize the vector size
SetVectorSize(VSize);
// Set up search mode defaults
SetSelectionMode(RANK_BASED);
SetReproductionMode(GENETIC_ALGORITHM);
SetCrossoverMode(TWO_POINT);
// Set up search parameter defaults
SetPopulationSize(1);
SetMaxGenerations(0);
SetElitistFraction(0.0);
SetMaxExpectedOffspring(1.1);
SetMutationVariance(1.0);
SetCrossoverProbability(0.0);
SetSearchConstraint(1);
SetReEvaluationFlag(0);
SetCheckpointInterval(0);
}
// The destructor
TSearch::~TSearch()
{
RandomStates.SetSize(0);
for (int i = 1; i <= PopulationSize(); i++)
Population[i].SetSize(0);
Population.SetSize(0);
Perf.SetSize(0);
fitness.SetSize(0);
crossTemplate.SetSize(0);
crossPoints.SetSize(0);
ConstraintVector.SetSize(0);
bestVector.SetSize(0);
}
// *********
// Accessors
// *********
// Resize the search vector and related vectors
void TSearch::SetVectorSize(int NewSize)
{
// Set up the new vector size
if (NewSize <= 0) {cerr << "Invalid vector size: "<< NewSize; exit(0);}
vectorSize = NewSize;
// Resize the population
for (int i = 1; i <= Population.Size(); i++)
Population[i].SetSize(NewSize);
// Adjust bestVector
bestVector.SetSize(NewSize);
// Reset the crossover template and crossover points vectors
TVector<int> v(1,NewSize);
for (int i = 1; i <= NewSize; i++)
v[i] = i;
SetCrossoverTemplate(v);
// Reset the constraint vector
ConstraintVector.SetSize(NewSize);
ConstraintVector.FillContents(1);
}
// Resize the population vector and related vectors
void TSearch::SetPopulationSize(int NewSize)
{
if (NewSize <= 0) {cerr << "Invalid population size: "<< NewSize; exit(0);}
Population.SetSize(NewSize);
for (int i = 1; i <= NewSize; i++)
Population[i].SetSize(vectorSize);
Perf.SetSize(NewSize);
fitness.SetSize(NewSize);
RandomStates.SetSize(NewSize);
for (int i = 1; i <= NewSize; i++)
RandomStates[i].SetRandomSeed(rs.UniformRandomInteger(1,INT_MAX));
}
// Set the maximum number of generations to search
void TSearch::SetMaxGenerations(int NewMax)
{
if (NewMax < 0) {
cerr << "Invalid MaxGenerations: " << NewMax;
exit(0);
}
MaxGens = NewMax;
}
// Set the fraction of the new population to be produced via elitist selection
void TSearch::SetElitistFraction(double NewFraction)
{
if (NewFraction < 0.0 || NewFraction > 1.0) {
cerr << "Invalid ElitismFraction: " << NewFraction;
exit(0);
}
EFraction = NewFraction;
}
// Set the number of offspring to be allocated to the highest-performing individual
void TSearch::SetMaxExpectedOffspring(double NewVal)
{
if (NewVal < 1.0 || NewVal > 2.0) {
cerr << "Invalid MaxExpectedOffspring: " << NewVal;
exit(0);
}
MaxExpOffspring = NewVal;
}
// Set the mutation variance
void TSearch::SetMutationVariance(double NewVariance)
{
if (NewVariance <= 0.0) {
cerr << "Invalid MutationVariance: " << NewVariance;
exit(0);
}
MutationVar = NewVariance;
}
// Set the crossover probability
void TSearch::SetCrossoverProbability(double NewProb)
{
if (NewProb < 0.0 || NewProb > 1.0) {
cerr << "Invalid CrossoverProbability: " << NewProb;
exit(0);
}
CrossProb = NewProb;
}
// Set the crossover template
void TSearch::SetCrossoverTemplate(TVector<int> &NewTemplate)
{
// Modify CrossoverTemplate
if (NewTemplate.Size() != vectorSize) {
cerr << "Invalid vector size for CrossoverTemplate: " << NewTemplate.Size();
exit(0);
}
int x = 1;
for (int i = 1; i <= NewTemplate.Size(); i++)
if (NewTemplate[i] != x) {
if (NewTemplate[i] == x+1){
x++;
} else {
cerr << "Invalid format for CrossoverTemplate: " << NewTemplate;
exit(0);
}
}
crossTemplate = NewTemplate;
// Modify CrossoverPoints appropriately
crossPoints.SetSize(x);
crossPoints[1] = 1;
x = 1;
for (int i = 1; i <= vectorSize; i++)
if (NewTemplate[i] != x)
crossPoints[++x] = i;
}
// Set the crossover points
void TSearch::SetCrossoverPoints(TVector<int> &NewPoints)
{
// Modify CrossoverPoints
if (NewPoints.Size() > vectorSize) {
cerr << "Invalid vector size for Crossover Points: " << NewPoints.Size();
exit(0);
}
if (NewPoints.Size() < 1 || NewPoints[1] != 1) {
cerr << "Invalid format for Crossover Points: " << NewPoints;
exit(0);
}
int x = 0;
for (int i = 1; i <= NewPoints.Size(); i++)
if (NewPoints[i] > x && NewPoints[i] <= vectorSize) x = NewPoints[i];
else {
cerr << "Invalid format for Crossover Points: " << NewPoints;
exit(0);
}
crossPoints = NewPoints;
// Modify CrossoverTemplate appropriately
x = 1;
for (int i = 1; i < NewPoints.Size(); i++) {
for (int j = NewPoints[i]; j <= NewPoints[i+1]; j++) {
int k = (j <= vectorSize)?j:vectorSize;
crossTemplate[k] = x;
}
x++;
}
for (int i = NewPoints[NewPoints.Size()]; i <= vectorSize; i++)
crossTemplate[i] = x;
}
// Set the search constraint vector
void TSearch::SetSearchConstraint(TVector<int> &constraint)
{
if (constraint.Size() != vectorSize) {
cerr << "Invalid vector size for SearchConstraint: " << constraint;
exit(0);
}
ConstraintVector = constraint;
}
void TSearch::SetSearchConstraint(int flag)
{
ConstraintVector.FillContents(flag);
}
// Set the frequency with which checkpoint files are written
// (0 means never)
void TSearch::SetCheckpointInterval(int NewInterval)
{
if (NewInterval < 0) {
cerr << "Invalid CheckpointInterval: " << NewInterval;
exit(0);
}
CheckpointInt = NewInterval;
}
// *****************
// Basic Search Loop
// *****************
// The top-level search loop
void TSearch::DoSearch(int ResumeFlag)
{
// Initialize search if necessary
if (!SearchInitialized) InitializeSearch();
// Make sure we have an evaluation function
if (EvaluationFunction == NULL)
{
cerr << "Error: NULL evaluation function\n";
exit(0);
}
// Unless we're resuming a checkpointed search, evalute the initial population and reset best
if (!ResumeFlag) {
EvaluatePopulation();
BestPerf = -1;
UpdateBestFlag = 0;
}
// Update and display statistics of the initial population
UpdatePopulationStatistics();
DisplayPopulationStatistics();
// If the best changed and there is a BestActionFunction, invoke it
if (UpdateBestFlag && BestActionFunction != NULL)
(*BestActionFunction)(Gen,bestVector);
// Repeat until done
while (!SearchTerminated())
{
Gen++;
UpdateBestFlag = 0;
ReproducePopulation();
UpdatePopulationStatistics();
DisplayPopulationStatistics();
// If the best changed and there is a BestActionFunction, invoke it
if (UpdateBestFlag && BestActionFunction != NULL)
(*BestActionFunction)(Gen,bestVector);
// If we're checkpointing and this is a checkpoint generation, save the state of the search
if ((CheckpointInt > 0) && (Gen > 0) && ((Gen % CheckpointInt) == 0))
WriteCheckpointFile();
}
// Display results
DisplaySearchResults();
}
// Execute a search
void TSearch::ExecuteSearch(void)
{
DoSearch(0);
}
// Initialize a new search
void TSearch::InitializeSearch(void)
{
// Reset the generation counter
Gen = 0;
// Set up the initial population
RandomizePopulation();
// The search is now initialized
SearchInitialized = 1;
}
// Randomize a vector
void TSearch::RandomizeVector(TVector<double> &v)
{
for (int i = 1; i <= v.Size(); i++)
v[i] = rs.UniformRandom(MinSearchValue,MaxSearchValue);
}
// Randomize the population
void TSearch::RandomizePopulation(void)
{
for (int i = 1; i <= Population.Size(); i++)
RandomizeVector(Population[i]);
}
// Update BestVector, BestPerformance, MinPerformance, MaxPerformance,
// AveragePerformance and Performance Variance
void TSearch::UpdatePopulationStatistics(void)
{
register int i;
double total = 0;
int bestindex = 1;
register double perf;
// Collect various info about the current population
MinPerf = 1E10;
MaxPerf = -1E10;
for (i = 1; i <= Population.Size(); i++)
{
perf = Perf[i];
// Update MinPerformance and MaxPerformance as necessary
if (perf > MaxPerf) {MaxPerf = perf; bestindex = i;}
if (perf < MinPerf) MinPerf = perf;
// Update total
total += perf;
}
// Update AveragePerformance (with protection from possible numerical errors)
AvgPerf = total/Population.Size();
if (AvgPerf < MinPerf) AvgPerf = MinPerf;
if (AvgPerf > MaxPerf) AvgPerf = MaxPerf;
// Update PerformanceVariance
if (Population.Size() > 1)
{
total = 0;
for (int i = 1; i <= Population.Size(); i++) {
double d = Perf[i] - AvgPerf;
total += d*d;
}
PerfVar = total/(Population.Size()-1);
}
else PerfVar = 0.0;
// If the best performance has improved or ReEvalFlag is set, update BestPerf and BestVector
if ((MaxPerf > BestPerf) || ReEvalFlag)
{
UpdateBestFlag = 1;
BestPerf = MaxPerf;
bestVector = Population[bestindex];
}
}
// Display population statistics
void TSearch::DisplayPopulationStatistics(void)
{
if (PopulationStatisticsDisplayFunction != NULL)
(*PopulationStatisticsDisplayFunction)(Gen,BestPerf,AvgPerf,PerfVar);
else {
cout << "Generation " << Gen << ": Best = " << BestPerf;
cout << ", Average = " << AvgPerf << ", Variance = " << PerfVar << endl;
}
}
// Display the results of a search
void TSearch::DisplaySearchResults(void)
{
if (SearchResultsDisplayFunction != NULL)
(*SearchResultsDisplayFunction)(*this);
}
// Resume a search from a checkpoint file.
// Note that this assumes that all function pointers in the current search object are the same
// as when the checkpoint file was saved, because function pointers are not saved in the
// checkpoint file
void TSearch::ResumeSearch(void)
{
// Restore the saved search object
ReadCheckpointFile();
// Restart the saved search
DoSearch(1);
}
// Determine if the search is over
int TSearch::SearchTerminated(void)
{
return (Gen >= MaxGens) ||
((SearchTerminationFunction != NULL) &&
(*SearchTerminationFunction)(Gen,BestPerf,AvgPerf,PerfVar));
}
// **********
// Evaluation
// **********
// Evaluate the given vector
// Note that negative performances are treated as 0
double TSearch::EvaluateVector(TVector<double> &v, RandomState &rs)
{
double perf = (*EvaluationFunction)(v, rs);
return (perf<0)?0:perf;
}
// Evaluate a population range
void *EvaluatePopulationRange(void *arg)
{
PopRangeSpec *prs = (PopRangeSpec *)arg;
TSearch *s = prs->search;
for (int i = prs->start; i <= prs->end; i++)
s->Perf[i] = s->EvaluateVector(s->Population[i], s->RandomStates[i]);
pthread_exit(NULL);
}
// Evaluate the current population, beginning with the STARTth individual
void TSearch::EvaluatePopulation(int start)
{
#ifdef THREADED_SEARCH // Evaluate the population in parallel
// Create threads
if (THREAD_COUNT > 1) {
int NumIndividuals = (PopulationSize() - start + 1)/THREAD_COUNT;
pthread_t threads[THREAD_COUNT-1];
PopRangeSpec psrs[THREAD_COUNT-1];
int rc;
for (int i = 1; i <= THREAD_COUNT - 1; i++) {
psrs[i-1].search = this;
psrs[i-1].start = (i-1)*NumIndividuals + start;
psrs[i-1].end = i*NumIndividuals + start - 1;
rc = pthread_create(&threads[i-1], NULL, EvaluatePopulationRange, (void *)&psrs[i-1]);
if (rc) {cerr << "Thread creation failed: " << rc << endl; exit(-1);}
}
// Evaluate the remaining individuals in the main thread
for (int i = (THREAD_COUNT - 1)*NumIndividuals + start; i <= PopulationSize(); i++)
Perf[i] = EvaluateVector(Population[i], RandomStates[i]);
// Wait for all other threads to complete
int status;
for (int i = 0; i <= THREAD_COUNT-2; i++)
pthread_join(threads[i], (void **)&status);
}
else
for (int i = start; i <= Population.Size(); i++)
Perf[i] = EvaluateVector(Population[i], RandomStates[i]);
#else // Evaluate the population serially
for (int i = start; i <= Population.Size(); i++)
Perf[i] = EvaluateVector(Population[i], RandomStates[i]);
#endif
}
// *********
// Selection
// *********
// Compute the coefficients for linear fitness scaling.
// See Goldberg's book, pp. 76-79.
double LinearScaleFactor(double min, double max, double avg, double FMultiple)
{
// Check that the scaled min will be greater than 0
if (min > (FMultiple * avg - max)/(FMultiple - 1))
// If so, do a full linear scaling
{
double delta = max - avg;
if (delta > 0.0) return (FMultiple - 1) * avg/delta;
else return 0.0;
}
else
// Otherwise, scale as much as possible
{
double delta = avg - min;
if (delta > 0.0) return avg/delta;
else return 0.0;
}
}
// Assign a normalized fitness to every individual in the population. There are two methods:
// fitness proporationate and rank-based. The rank-based method uses Baker's linear ranking
// method (see Goldberg's book pp. 124-125 or Mitchell's book pp. 169-170). The fitness
// formula is derived as follows. If the highest ranked individual (with rank 1) receives
// MaxExpOffspring, then the fitness is given by y = m(x-1) + MaxExpOffspring. Since the
// sum of the fitness over all individuals must equal 1, we can apply this constraint to
// solve for m in this linear equation.
void TSearch::UpdatePopulationFitness(void)
{
int psize = PopulationSize();
SortPopulation();
switch (SelectMode) {
// Calculate normalized fitness based on a fitness proportionate method with linear scaling
case FITNESS_PROPORTIONATE:
{
double m = LinearScaleFactor(MinPerf,MaxPerf,AvgPerf,MaxExpOffspring);
double total = 0;
for (int i = 1; i <= psize; i++)
{
fitness[i] = m * (Perf[i] - AvgPerf) + AvgPerf;
total = total + fitness[i];
}
for (int i = 1; i <= psize; i++)
fitness[i] = fitness[i]/total;
break;
}
// Calculate normalized fitness based on a rank-based method
case RANK_BASED:
for (int i = 1; i <= psize; i++)
fitness[i] = (MaxExpOffspring + (2.0 - 2.0*MaxExpOffspring)*((i-1.0)/(psize-1)))/psize;
break;
default: cerr << "Invalid selection mode" << endl; exit(0);
}
}
// *****************
// Genetic Operators
// *****************
// Gaussian mutation
void TSearch::MutateVector(TVector<double> &v)
{
double magnitude;
TVector<double> TempVector(1,vectorSize);
// Generate a normally-distributed random magnitude
magnitude = rs.GaussianRandom(0.0,MutationVar);
// Generate a random unit vector
rs.RandomUnitVector(TempVector);
// Apply the mutation to V
for (int i = 1; i <= vectorSize; i++)
if (ConstraintVector[i])
v[i] = clip(v[i] + magnitude * TempVector[i],MinSearchValue,MaxSearchValue);
else
v[i] = v[i] + magnitude * TempVector[i];
}
// Perform a modular uniform crossover between two individuals
void TSearch::UniformCrossover(TVector<double> &v1, TVector<double> &v2)
{
if (crossPoints.Size() < 2) return;
for (int i = 1; i <= crossPoints.Size() - 1; i++)
if (ProbabilisticChoice(0.5))
for (int j = crossPoints[i]; j < crossPoints[i+1]; j++) {
double temp = v1[j];
v1[j] = v2[j];
v2[j] = temp;
}
if (ProbabilisticChoice(0.5))
for (int j = crossPoints[crossPoints.Size()]; j <= vectorSize; j++) {
double temp = v1[j];
v1[j] = v2[j];
v2[j] = temp;
}
}
// Perform a modular two-point crossover between two individuals
void TSearch::TwoPointCrossover(TVector<double> &v1, TVector<double> &v2)
{
if (crossPoints.Size() < 2) return;
int i1 = rs.UniformRandomInteger(1,crossPoints.Size());
int i2 = i1;
while (i2 == i1)
i2 = rs.UniformRandomInteger(1,crossPoints.Size());
if (i1 > i2) {
int t = i1;
i1 = i2;
i2 = t;
}
for (int i = crossPoints[i1]; i < crossPoints[i2]; i++) {
double temp = v1[i];
v1[i] = v2[i];
v2[i] = temp;
}
}
// ************
// Reproduction
// ************
// Create a new population
void TSearch::ReproducePopulation(void)
{
switch (RepMode) {
case HILL_CLIMBING: ReproducePopulationHillClimbing(); break;
case GENETIC_ALGORITHM: ReproducePopulationGeneticAlgorithm(); break;
default: cerr << "Invalid reproduction mode" << endl; exit(0);
}
}
void TSearch::ReproducePopulationHillClimbing(void)
{
int psize = PopulationSize();
// Calculate population fitness
UpdatePopulationFitness();
// Select the parents using Baker's stochastic universal sampling
TVector<TVector<double> > ParentPopulation(1,psize);
TVector<double> ParentPerf(1,psize);
int j = 1;
double sum = 0;
double rand = rs.UniformRandom(0.0,1.0);
for (int i = 1; (i <= psize) && (j <= psize); i++) {
sum += psize * fitness[i];
while (rand < sum) {
ParentPopulation[j] = Population[i];
ParentPerf[j] = Perf[i];
j++;
rand++;
}
}
// Replace the current population with the parent population
Population = ParentPopulation;
// If ReEvalFlag is set
if (ReEvalFlag) {
// reset BestPerf
BestPerf = -1;
// re-evaluate the parents
EvaluatePopulation();
// and update the performance values for the parents
ParentPerf = Perf;
}
// Produce the new population by mutating each parent
for (int i = 1; i <= psize; i++)
MutateVector(Population[i]);
// Evaluate the children
EvaluatePopulation();
// Restore each parent whose child's performance is worse
for (int i = 1; i <= psize; i++)
if (ParentPerf[i] > Perf[i]) {
Population[i] = ParentPopulation[i];
Perf[i] = ParentPerf[i];
}
}
void TSearch::ReproducePopulationGeneticAlgorithm(void)
{
int psize = PopulationSize();
// Calculate population fitness
UpdatePopulationFitness();
// Determine the number of elite individuals in the new population
int ElitePop = (int)floor(EFraction*psize + 0.5);
// Select the rest of the population using Baker's stochastic universal sampling
TVector<TVector<double> > TempPopulation = Population;
int j = ElitePop+1;
double sum = 0;
double rand = rs.UniformRandom(0.0,1.0);
for (int i = 1; (i <= psize) && (j <= psize); i++) {
sum += (psize-ElitePop) * fitness[i];
while (rand < sum) {
Population[j++] = TempPopulation[i];
rand++;
}
}
// Randomly shuffle the nonelite parents in preparation for crossover
if (CrossProb > 0) {
TVector<double> TempInd;
for (int i = ElitePop+1; i <= psize; i++) {
int k = rs.UniformRandomInteger(i,psize);
TempInd = Population[k];
Population[k] = Population[i];
Population[i] = TempInd;
}
}
// Apply mutation or crossover to each nonelite parent and compute the child's performance
int i = ElitePop+1;
TVector<double> Parent1, Parent2;
while (i <= psize) {
// Perform crossover with probability CrossProb
if (ProbabilisticChoice(CrossProb) && (i < psize)) {
Parent1 = Population[i];
Parent2 = Population[i+1];
switch (CrossMode) {
case UNIFORM: UniformCrossover(Population[i],Parent2); break;
case TWO_POINT: TwoPointCrossover(Population[i],Parent2); break;
default: cerr << "Invalid crossover mode" << endl; exit(0);
}
// If the child is the same as the first parent after crossover, mutate it
if (EqualVector(Population[i],Parent1)) MutateVector(Population[i]);
i++;
}
// Otherwise, perform mutation
else MutateVector(Population[i++]);
}
// Evaluate the new population
if (ReEvalFlag) EvaluatePopulation();
else EvaluatePopulation(ElitePop+1);
}
// Quicksort the population in descending order by performance
inline int partition(int first, int last, TVector<double> &perf, TVector<TVector<double> > &pop)
{
int pivot = first;
double pivot_value = perf[first];
double temp1;
TVector<double> temp2;
for (int i = first; i <= last; i++) {
if (perf[i] > pivot_value) {
pivot++;
if (i != pivot) {
temp1 = perf[pivot]; perf[pivot] = perf[i]; perf[i] = temp1;
temp2 = pop[pivot]; pop[pivot] = pop[i]; pop[i] = temp2;
}
}
}
temp1 = perf[pivot]; perf[pivot] = perf[first]; perf[first] = temp1;
temp2 = pop[pivot]; pop[pivot] = pop[first]; pop[first] = temp2;
return pivot;
}
inline void quicksort(int first, int last, TVector<double> &perf, TVector<TVector<double> > &pop)
{
if (first < last) {
int pivot = partition(first,last,perf,pop);
quicksort(first,pivot-1,perf,pop);
quicksort(pivot+1,last,perf,pop);
}
}
void TSearch::SortPopulation(void)
{
quicksort(1,Population.Size(),Perf,Population);
}
// ****************
// Input and Output
// ****************
// Read and write a search object
//
// Note that a complete representation of the state of a search cannot be stored
// in a file because of the function pointers. These i/o methods are primarily
// designed to support a simple checkpoint/restart facility.
//
// File format:
// <Vector Size> <Population Size>
// <Generation> <Max Generation>
// <Random State>
// <Selection Mode> <Reproduction Mode> <Crossover Mode>
// <Search Initialized?> <Re-evaluation Flag> <Checkpoint Frequency>
// <Search Constraint>
// <Mutation Variance> <Crossover Prob>
// <Crossover Template>
// <Elitist Fraction> <Maximum Expected Offspring>
// <Best Performance> <Best Vector>
// <Performance 1> <Individual 1>
// ...
// <Performance N> <Individual N>
// <RandomState 1>
// ...
// <RandomState N>
void TSearch::WriteCheckpointFile(void)
{
ofstream bofs("search.cpt", ios::binary);
int i;
double d;
// Write the vector size and population size
bofs.write((const char*) &(vectorSize), sizeof(vectorSize));
i = PopulationSize();
bofs.write((const char*) &(i), sizeof(i));
// Write the generation number and the maximum number of generations
bofs.write((const char*) &(Gen), sizeof(Gen));
bofs.write((const char*) &(MaxGens), sizeof(MaxGens));
// Write the random state
rs.BinaryWriteRandomState(bofs);
// Write the selection mode
switch (SelectMode) {
case FITNESS_PROPORTIONATE: i = 1; break;
case RANK_BASED: i = 2; break;
default: cerr << "Invalid selection mode" << endl; exit(0);
}
bofs.write((const char*) &(i), sizeof(i));
// Write the reproduction mode
switch (RepMode) {
case HILL_CLIMBING: i = 1; break;
case GENETIC_ALGORITHM: i = 2; break;
default: cerr << "Invalid reproduction mode" << endl; exit(0);
}
bofs.write((const char*) &(i), sizeof(i));
// Write the crossover mode
switch (CrossMode) {
case UNIFORM: i = 1; break;
case TWO_POINT: i = 2; break;
default: cerr << "Invalid crossover mode" << endl; exit(0);
}
bofs.write((const char*) &(i), sizeof(i));
// Write the search initialized and re-evaluation flags, and the checkpoint frequency
bofs.write((const char*) &(SearchInitialized), sizeof(SearchInitialized));
bofs.write((const char*) &(ReEvalFlag), sizeof(ReEvalFlag));
bofs.write((const char*) &(CheckpointInt), sizeof(CheckpointInt));
// Write the search constraint vector
ConstraintVector.BinaryWriteVector(bofs);
// Write the mutation variance
bofs.write((const char*) &(MutationVar), sizeof(MutationVar));
// Write the crossover probability
bofs.write((const char*) &(CrossProb), sizeof(CrossProb));
// Write the crossover template
crossTemplate.BinaryWriteVector(bofs);
// Write the elitist fraction
bofs.write((const char*) &(EFraction), sizeof(EFraction));
// Write the max expected offspring
bofs.write((const char*) &(MaxExpOffspring), sizeof(MaxExpOffspring));
// Write out the peformance and parameter vector of the best individual
bofs.write((const char*) &(BestPerf), sizeof(BestPerf));
bestVector.BinaryWriteVector(bofs);
// Write out the performance and parameter vector of each individual in the population
for (int i = 1; i <= PopulationSize(); i++) {
d = Performance(i);
bofs.write((const char*) &(d), sizeof(d));
Individual(i).BinaryWriteVector(bofs);
}
// Write out the random state for each individual in the population
for (int i = 1; i <= PopulationSize(); i++)
RandomStates[i].BinaryWriteRandomState(bofs);
}
void TSearch::ReadCheckpointFile(void)
{
ifstream bifs("search.cpt", ios::binary);
int i;
double d;
TVector<int> iv;
// Read the vector size and population size
bifs.read((char*) &(i), sizeof(i));
SetVectorSize(i);
bifs.read((char*) &(i), sizeof(i));
SetPopulationSize(i);
// Read the generation number and the maximum number of generations
bifs.read((char*) &(Gen), sizeof(Gen));
bifs.read((char*) &(i), sizeof(i));
SetMaxGenerations(i);
// Read the random state
rs.BinaryReadRandomState(bifs);
// Read the selection mode
bifs.read((char*) &(i), sizeof(i));
switch (i) {
case 1: SetSelectionMode(FITNESS_PROPORTIONATE); break;
case 2: SetSelectionMode(RANK_BASED); break;
default: cerr << "Invalid selection mode" << endl; exit(0);
}
// Read the reproduction mode
bifs.read((char*) &(i), sizeof(i));
switch (i) {
case 1: SetReproductionMode(HILL_CLIMBING);break;
case 2: SetReproductionMode(GENETIC_ALGORITHM);break;
default: cerr << "Invalid reproduction mode" << endl; exit(0);
}
// Read the crossover mode
bifs.read((char*) &(i), sizeof(i));
switch (i) {
case 1: SetCrossoverMode(UNIFORM);break;
case 2: SetCrossoverMode(TWO_POINT);break;
default: cerr << "Invalid crossover mode" << endl; exit(0);
}
// Read the search initialized and re-evaluation flags, and the checkpoint frequency
bifs.read((char*) &(SearchInitialized), sizeof(SearchInitialized));
bifs.read((char*) &(ReEvalFlag), sizeof(ReEvalFlag));
bifs.read((char*) &(CheckpointInt), sizeof(CheckpointInt));
// Read the search constraint vector
iv.BinaryReadVector(bifs);
SetSearchConstraint(iv);
// Read the mutation variance
bifs.read((char*) &(d), sizeof(d));
SetMutationVariance(d);
// Read the crossover probability
bifs.read((char*) &(d), sizeof(d));
SetCrossoverProbability(d);
// Read the crossover template
iv.BinaryReadVector(bifs);
SetCrossoverTemplate(iv);
// Read the elitist fraciton
bifs.read((char*) &(d), sizeof(d));
SetElitistFraction(d);
// Read the max expected offspring
bifs.read((char*) &(d), sizeof(d));
SetMaxExpectedOffspring(d);
// Read the peformance and parameter vector of the best individual
bifs.read((char*) &(BestPerf), sizeof(BestPerf));
bestVector.BinaryReadVector(bifs);
// Read the performance and parameter vector of each individual in the population
for (int i = 1; i <= PopulationSize(); i++) {
bifs.read((char*) &(d), sizeof(d));
Perf[i] = d;
Population[i].BinaryReadVector(bifs);
}
// Read in the random state for each individual in the populaton
for (int i = 1; i <= PopulationSize(); i++)
RandomStates[i].BinaryReadRandomState(bifs);
}