-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubplotter.py
72 lines (61 loc) · 2.97 KB
/
subplotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def subplotall(args):
import pickle
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('seaborn')
plt.rc('axes', labelsize=20, titlesize=20)
plt.rc('xtick', labelsize=15)
plt.rc('ytick', labelsize=15)
plt.rc('legend', fontsize=19)
linestyles = ('-','--','-','--')
fig = plt.figure(figsize=(18.,7.5))
fig.subplots_adjust(left=0.05, right=0.98,top=0.95, bottom=0.16, hspace=0.3,wspace=0.31)
for i in range(len(args.lams)):
f = open('sbe'+'_'+args.network+'_a'+str(args.attack)+'_lam'+str(args.lams[i])+'.pkl', 'rb')
asbe = np.array(pickle.load(f))
f.close()
f = open('ce'+'_'+args.network+'_a'+str(args.attack)+'_lam'+str(args.lams[i])+'.pkl', 'rb')
ace = np.array(pickle.load(f))
f.close()
fig.add_subplot(2, len(args.lams), i+1, xlabel='Step', ylabel='MSBE', title=r'$\lambda=$%.1g' %args.lams[i])
for k in range(np.shape(asbe)[-1]):
y = asbe[:,:,k]
y_mean = np.mean(y, 0)
x = np.arange(len(y_mean))
plt.plot(x, y_mean, linestyles[k], linewidth=2.25)
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
if args.lnk:
fig.add_subplot(2, len(args.lams), i+1+len(args.lams), xlabel='Step', ylabel=r'MCE$\times k/\ln(k)$')
else:
fig.add_subplot(2, len(args.lams), i+1+len(args.lams), xlabel='Step', ylabel='MCE')
for k in range(np.shape(ace)[-1]):
y = ace[:,:,k]
y_mean = np.mean(y, 0)
try:
if args.lnk:
for j in np.arange(1,len(y_mean)):
y_mean[j] = y_mean[j]*(j+1)/np.log(j+1)
except:
pass
x = np.arange(len(y_mean))
plt.plot(x, y_mean, linestyles[k], linewidth=2.5)
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
fig.legend((r'TD($\lambda$)-mean', r'TD($\lambda$)-trim', r'TD($\lambda$)-mean-attack', r'TD($\lambda$)-trim-attack'),
loc='upper center', bbox_to_anchor=(0.5, 0.07), fancybox=False, shadow=False, ncol=4, borderaxespad=0., frameon=True)
# fig.tight_layout()
fig.savefig('all_'+args.network+'_a'+str(args.attack)+'.pdf', dpi=fig.dpi, bbox_inches="tight")
plt.show()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Plotter for robust TD')
parser.add_argument('--network', type=str, default='complete',
help='name of the network (h1b1, h3b1, b3b2, renyi, complete)')
parser.add_argument('--attack', type=int, default=2,
help='Type of attack')
parser.add_argument('--lams', type=float, nargs='+',
help='lambda list', default=[0.0,0.3,0.6,0.9])
parser.add_argument('--lnk', action='store_true',
help='whether to divide aggregate ce by ln(epoch) or epoch')
args = parser.parse_args()
subplotall(args)