Skip to content

Latest commit

 

History

History
executable file
·
283 lines (236 loc) · 10.2 KB

3_exist_data_new_model.md

File metadata and controls

executable file
·
283 lines (236 loc) · 10.2 KB

3: Train with customized models and standard datasets

In this note, you will know how to train, test and inference your own customized models under standard datasets. We use the cityscapes dataset to train a customized Cascade Mask R-CNN R50 model as an example to demonstrate the whole process, which using AugFPN to replace the default FPN as neck, and add Rotate or Translate as training-time auto augmentation.

The basic steps are as below:

  1. Prepare the standard dataset
  2. Prepare your own customized model
  3. Prepare a config
  4. Train, test, and inference models on the standard dataset.

Prepare the standard dataset

In this note, as we use the standard cityscapes dataset as an example.

It is recommended to symlink the dataset root to $MMDETECTION/data. If your folder structure is different, you may need to change the corresponding paths in config files.

mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── cityscapes
│   │   ├── annotations
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── VOCdevkit
│   │   ├── VOC2007
│   │   ├── VOC2012

Or you can set your dataset root through

export MMDET_DATASETS=$data_root

We will replace dataset root with $MMDET_DATASETS, so you don't have to modify the corresponding path in config files.

The cityscapes annotations have to be converted into the coco format using tools/dataset_converters/cityscapes.py:

pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./data/cityscapes/annotations

Currently the config files in cityscapes use COCO pre-trained weights to initialize. You could download the pre-trained models in advance if network is unavailable or slow, otherwise it would cause errors at the beginning of training.

Prepare your own customized model

The second step is to use your own module or training setting. Assume that we want to implement a new neck called AugFPN to replace with the default FPN under the existing detector Cascade Mask R-CNN R50. The following implementsAugFPN under MMDetection.

1. Define a new neck (e.g. AugFPN)

Firstly create a new file mmdet/models/necks/augfpn.py.

from ..builder import NECKS

@NECKS.register_module()
class AugFPN(nn.Module):

    def __init__(self,
                in_channels,
                out_channels,
                num_outs,
                start_level=0,
                end_level=-1,
                add_extra_convs=False):
        pass

    def forward(self, inputs):
        # implementation is ignored
        pass

2. Import the module

You can either add the following line to mmdet/models/necks/__init__.py,

from .augfpn import AugFPN

or alternatively add

custom_imports = dict(
    imports=['mmdet.models.necks.augfpn.py'],
    allow_failed_imports=False)

to the config file and avoid modifying the original code.

3. Modify the config file

neck=dict(
    type='AugFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)

For more detailed usages about customize your own models (e.g. implement a new backbone, head, loss, etc) and runtime training settings (e.g. define a new optimizer, use gradient clip, customize training schedules and hooks, etc), please refer to the guideline Customize Models and Customize Runtime Settings respectively.

Prepare a config

The third step is to prepare a config for your own training setting. Assume that we want to add AugFPN and Rotate or Translate augmentation to existing Cascade Mask R-CNN R50 to train the cityscapes dataset, and assume the config is under directory configs/cityscapes/ and named as cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py, the config is as below.

# The new config inherits the base configs to highlight the necessary modification
_base_ = [
    '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
]

model = dict(
    # set None to avoid loading ImageNet pretrained backbone,
    # instead here we set `load_from` to load from COCO pretrained detectors.
    backbone=dict(init_cfg=None),
    # replace neck from defaultly `FPN` to our new implemented module `AugFPN`
    neck=dict(
        type='AugFPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    # We also need to change the num_classes in head from 80 to 8, to match the
    # cityscapes dataset's annotation. This modification involves `bbox_head` and `mask_head`.
    roi_head=dict(
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.1, 0.1, 0.2, 0.2]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.05, 0.05, 0.1, 0.1]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                # change the number of classes from defaultly COCO to cityscapes
                num_classes=8,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.033, 0.033, 0.067, 0.067]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
        ],
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            # change the number of classes from defaultly COCO to cityscapes
            num_classes=8,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))

# over-write `train_pipeline` for new added `AutoAugment` training setting
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='AutoAugment',
        policies=[
            [dict(
                 type='Rotate',
                 level=5,
                 img_fill_val=(124, 116, 104),
                 prob=0.5,
                 scale=1)
            ],
            [dict(type='Rotate', level=7, img_fill_val=(124, 116, 104)),
             dict(
                 type='Translate',
                 level=5,
                 prob=0.5,
                 img_fill_val=(124, 116, 104))
            ],
        ]),
    dict(
        type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]

# set batch_size per gpu, and set new training pipeline
data = dict(
    samples_per_gpu=1,
    workers_per_gpu=3,
    # over-write `pipeline` with new training pipeline setting
    train=dict(dataset=dict(pipeline=train_pipeline)))

# Set optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# Set customized learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8])
runner = dict(type='EpochBasedRunner', max_epochs=10)

# We can use the COCO pretrained Cascade Mask R-CNN R50 model for more stable performance initialization
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco/cascade_mask_rcnn_r50_fpn_1x_coco_20200203-9d4dcb24.pth'

Train a new model

To train a model with the new config, you can simply run

python tools/train.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py

For more detailed usages, please refer to the Case 1.

Test and inference

To test the trained model, you can simply run

python tools/test.py configs/cityscapes/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py work_dirs/cascade_mask_rcnn_r50_augfpn_autoaug_10e_cityscapes.py/latest.pth --eval bbox segm

For more detailed usages, please refer to the Case 1.