-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfgvr_train.py
237 lines (172 loc) · 9.4 KB
/
fgvr_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import tensorflow as tf
import constants as const
import os
import numpy as np
from datetime import datetime
from pydoc import locate
import time
from data.tf_tuple_loader import TensorflowTupleLoader
from utils import tf_utils
import logging.config
from utils import log_utils
from base_config import BaseConfig
import json
from utils import os_utils
def touch_dir(path):
if(not os.path.exists(path)):
os.makedirs(path)
def main(argv):
cfg = BaseConfig().parse(argv)
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpu
img_generator_class = locate(cfg.db_tuple_loader)
args = dict()
args['db_path'] = cfg.db_path
args['tuple_loader_queue_size'] = cfg.tuple_loader_queue_size
args['preprocess_func'] = cfg.preprocess_func
args['batch_size'] = cfg.batch_size
args['shuffle'] = False
args['img_size'] = const.max_frame_size
args['gen_hot_vector'] = True
args['csv_file'] = cfg.train_csv_file
train_iter = img_generator_class(args)
args['csv_file'] = cfg.test_csv_file
val_iter = img_generator_class(args)
train_imgs, train_lbls = train_iter.imgs_and_lbls()
val_imgs, val_lbls = val_iter.imgs_and_lbls()
# Where to save the trained model
save_model_dir = cfg.checkpoint_dir
model_basename = os.path.basename(save_model_dir)
touch_dir(save_model_dir)
## Log experiment
args_file = os.path.join(cfg.checkpoint_dir, 'args.json')
with open(args_file, 'w') as f:
json.dump(vars(cfg), f, ensure_ascii=False, indent=2, sort_keys=True)
# os_utils.touch_dir(save_model_dir)
log_file = os.path.join(cfg.checkpoint_dir, cfg.log_filename + '.txt')
os_utils.touch_dir(cfg.checkpoint_dir)
logger = log_utils.create_logger(log_file)
with tf.Graph().as_default():
# Create train and val dataset following tensorflow Data API
## A dataset element has an image and lable
train_dataset = TensorflowTupleLoader(train_imgs, train_lbls,cfg, is_training=True).dataset
val_dataset = TensorflowTupleLoader(val_imgs, val_lbls,cfg, is_training=False, batch_size=cfg.batch_size,
repeat=False).dataset
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
handle, train_dataset.output_types, train_dataset.output_shapes)
images_ph, lbls_ph = iterator.get_next()
training_iterator = train_dataset.make_one_shot_iterator()
validation_iterator = val_dataset.make_initializable_iterator()
## Load a pretrained network {resnet_v2 or densenet161} based on config.network_name configuration
network_class = locate(cfg.network_name)
model = network_class(cfg, is_training=True, images_ph=images_ph, lbls_ph=lbls_ph)
trainable_vars = tf.trainable_variables()
if cfg.caffe_iter_size > 1: ## Accumulated Gradient
## Creation of a list of variables with the same shape as the trainable ones
# initialized with 0s
accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in trainable_vars]
zero_ops = [tv.assign(tf.zeros_like(tv)) for tv in accum_vars]
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
global_step = tf.Variable(0, name='global_step', trainable=False)
learning_rate = tf_utils.poly_lr(global_step,cfg)
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
if cfg.caffe_iter_size > 1: ## Accumulated Gradient
grads = optimizer.compute_gradients(model.train_loss, trainable_vars)
# Adds to each element from the list you initialized earlier with zeros its gradient (works because accum_vars and gvs are in the same order)
accum_ops = [accum_vars[i].assign_add(gv[0]) for i, gv in enumerate(grads)]
iter_size = cfg.caffe_iter_size
# Define the training step (part with variable value update)
train_op = optimizer.apply_gradients([(accum_vars[i] / iter_size, gv[1]) for i, gv in enumerate(grads)],
global_step=global_step)
else: # If accumulated gradient disabled, do regular training
grads = optimizer.compute_gradients(model.train_loss)
train_op = optimizer.apply_gradients(grads, global_step=global_step)
# logger.info('=========================================================')
# for v in tf.trainable_variables():
# mprint('trainable_variables: {0} \t {1}'.format(str(v.name),str(v.shape)))
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
training_handle = sess.run(training_iterator.string_handle())
validation_handle = sess.run(validation_iterator.string_handle())
# now = datetime.now()
# if (config.tensorbaord_file == None):
# tb_path = config.tensorbaord_dir + now.strftime("%Y%m%d-%H%M%S")
# else:
# tb_path = config.tensorbaord_dir + config.tensorbaord_file
start_iter = 1 # No Resume in this code version
# train_writer = tf.summary.FileWriter(tb_path, sess.graph)
saver = tf.train.Saver() # saves variables learned during training
ckpt_file = os.path.join(save_model_dir, cfg.checkpoint_filename)
print('Model Path ', ckpt_file)
load_model_msg = model.load_model(save_model_dir, ckpt_file, sess, saver, is_finetuning=True)
logger.info(load_model_msg)
val_loss = tf.summary.scalar('Val_Loss', model.val_loss)
val_acc_op = tf.summary.scalar('Batch_Val_Acc', model.val_accuracy)
model_acc_op = tf.summary.scalar('Split_Val_Accuracy', model.val_accumulated_accuracy)
logger.info('Start Training ***********')
best_acc = 0
best_model_step = 0
for current_iter in range(start_iter, cfg.train_iters+1):
start_time_train = time.time()
feed_dict = {handle: training_handle}
## Here is where training and backpropagation start
# In case accumulated gradient enabled, i.e. config.caffe_iter_size > 1
for mini_batch in range(cfg.caffe_iter_size - 1):
sess.run(accum_ops, feed_dict)
model_loss_value, accuracy_value, _ = sess.run([model.train_loss, model.train_accuracy, train_op],
feed_dict)
# In case accumulated gradient enabled, reset shadow variables
if cfg.caffe_iter_size > 1:
sess.run(zero_ops)
## Here is where training and backpropagation end
train_time = time.time() - start_time_train
if (current_iter % cfg.logging_threshold == 0 or current_iter ==1):
logger.info(
'i {0:04d} loss {1:4f} Acc {2:2f} Batch Time {3:3f}'.format(current_iter, model_loss_value, accuracy_value,
train_time))
if (current_iter % cfg.test_interval == 0):
# run_metadata = tf.RunMetadata()
tf.local_variables_initializer().run()
sess.run(validation_iterator.initializer)
while True:
try:
feed_dict = {handle: validation_handle}
val_loss_op, batch_accuracy, accuracy_op, _val_acc_op, _val_acc, c_cnf_mat = sess.run(
[val_loss, model.val_accuracy, model_acc_op, val_acc_op, model.val_accumulated_accuracy,
model.val_confusion_mat], feed_dict)
except tf.errors.OutOfRangeError:
logger.info('Val Acc {0}'.format(_val_acc))
break
# train_writer.add_run_metadata(run_metadata, 'step%03d' % current_iter)
# train_writer.add_summary(val_loss_op, current_iter)
# train_writer.add_summary(_val_acc_op, current_iter)
# train_writer.add_summary(accuracy_op, current_iter)
#
# train_writer.flush()
if (current_iter % cfg.logging_threshold == 0):
saver.save(sess, ckpt_file)
if best_acc < _val_acc:
saver.save(sess, ckpt_file + 'best')
best_acc = _val_acc
best_model_step = current_iter
## Early dropping style.
logger.info('Best Acc {0} at {1} == {2}'.format(best_acc, best_model_step, model_basename))
saver.save(sess, ckpt_file) ## Save final ckpt before closing
sess.close()
if __name__ == '__main__':
num_trials = 1
arg_db_name = 'flowers'
arg_net = 'resnet50'
args = [
'--gpu', '0',
# '--checkpoint_dir', '/vulcan/scratch/ahmdtaha/model/cars_inc4_lr0.01_B32_caf1_iter80K_lambda1_trn_mode2_randCrop_hFlip_endLr_trial_0',
# '--checkpoint_dir', arg_ckpt,
'--db_name', arg_db_name,
'--net', arg_net,
'--logging_threshold', '500',
'--train_iters', '40000',
'--checkpoint_suffix', '_ckpt_suffix'
]
main(args)