-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathtrain_reward_lora.sh
36 lines (34 loc) · 1.39 KB
/
train_reward_lora.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
export MODEL_NAME="models/Diffusion_Transformer/EasyAnimateV5-12b-zh-InP"
export TRAIN_PROMPT_PATH="MovieGenVideoBench_train.txt"
# Performing validation simultaneously with training will increase time and GPU memory usage.
export VALIDATION_PROMPT_PATH="MovieGenVideoBench_val.txt"
export NCCL_IB_DISABLE=1
export NCCL_P2P_DISABLE=1
NCCL_DEBUG=INFO
# When train model with multi machines, use "--config_file accelerate.yaml" instead of "--mixed_precision='bf16'".
accelerate launch --num_processes=8 --mixed_precision="bf16" --use_deepspeed --deepspeed_config_file config/zero_stage2_config.json scripts/train_reward_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--config_path="config/easyanimate_video_v5_magvit_multi_text_encoder.yaml" \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--max_train_steps=10000 \
--checkpointing_steps=100 \
--learning_rate=1e-05 \
--seed=42 \
--output_dir="output_dir" \
--gradient_checkpointing \
--mixed_precision="bf16" \
--adam_weight_decay=3e-2 \
--adam_epsilon=1e-10 \
--max_grad_norm=0.3 \
--prompt_path=$TRAIN_PROMPT_PATH \
--train_sample_height=256 \
--train_sample_width=256 \
--video_length=49 \
--validation_prompt_path=$VALIDATION_PROMPT_PATH \
--validation_steps=100 \
--validation_batch_size=8 \
--num_decoded_latents=1 \
--reward_fn="HPSReward" \
--reward_fn_kwargs='{"version": "v2.1"}' \
--backprop