-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgym_run.py
38 lines (30 loc) · 824 Bytes
/
gym_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import torch.nn as nn
from model import init_gym, init_model
env = init_gym(
"BeeWorld",
logs_path="test_logs/",
render_mode="human",
walls=[
[[5.0, 0.0], [5.0, 5.0]],
[[2.5, 10.0], [2.5, 6.0]],
[[7.5, 10.0], [7.5, 6.0]],
],
goal_size=0.5,
agent_location_range=[[0.0, 2.0], [0.0, 10.0]],
goal_location_range=[[5.0, 10.0], [0.0, 10.0]],
frame_stack_size=5,
noise_vision=True,
noise_smell=True,
)
model = init_model(
env, policy_kwargs={"net_arch": [100, 100], "activation_fn": nn.ReLU}
)
model.learn(total_timesteps=1000, log_interval=10)
vec_env = model.get_env()
obs = vec_env.reset()
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = vec_env.step(action)
print(obs.shape)
env.close()