-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_model.py
173 lines (153 loc) · 5.85 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import yaml
import argparse
import numpy as np
import torch.nn as nn
from utils import create_directory, save_config
from model import init_gym, init_model, load_model, setup_logging
from stable_baselines3 import TD3
def custom_training(config):
"""
Train a custom reinforcement learning model using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm.
Parameters:
config (dict): A dictionary containing configuration parameters for training the model.
Config Dictionary Structure:
{
"train": {
"policy_kwargs": {
"activation_fn": str or nn.Module,
... other policy_kwargs ...
},
"learning_rate": float,
"timesteps": int
},
"setup": {
"path": str,
"old_alias": str,
"alias": str,
"continue_training": bool
},
"env": {
"gym_name": str,
"render_mode": str,
"video": bool,
"max_episode_steps": int,
"walls": list,
"goal_size": float,
"agent_location_range": list,
"goal_location_range": list,
"frame_stack_size": int
}
}
The function performs the following steps:
1. Creates the necessary directories for logs and videos.
2. Initializes the Gym environment for training.
3. Loads an existing model if `config["setup"]["continue_training"]` is True and the model exists.
Otherwise, creates a new model.
4. Trains the model for the specified number of timesteps.
5. Saves the replay buffer and configuration.
Args:
config (dict): A dictionary containing configuration parameters for training the model.
Returns:
None
"""
if type(config["train"]["policy_kwargs"]["activation_fn"]) == str:
# Convert the activation function name to the corresponding nn.Module class
config["train"]["policy_kwargs"]["activation_fn"] = getattr(
nn, config["train"]["policy_kwargs"]["activation_fn"]
)
# Set up paths for input and output directories
base_path = config["setup"]["path"]
input_path = os.path.join(base_path, config["setup"]["old_alias"])
output_path = os.path.join(base_path, config["setup"]["alias"])
# Create directories for logs and videos
logs_path = os.path.join(output_path, "logs")
create_directory(logs_path)
video_path = None
if config["env"]["video"]:
video_path = os.path.join(output_path, "video")
create_directory(video_path)
# Initialize the Gym environment for training
env = init_gym(
gym_name=config["env"].get("gym_name", "BeeWorld"),
logs_path=logs_path,
video_path=video_path,
render_mode=config["env"].get("render_mode", "rgb_array"),
max_episode_steps=config["train"].get("max_episode_steps", 2000),
walls=config["env"].get("walls", []),
goal_size=config["env"].get("goal_size", 1.0),
agent_location_range=config["env"].get(
"agent_location_range", [[0.0, 10.0], [0.0, 10.0]]
),
goal_location_range=config["env"].get(
"goal_location_range", [[0.0, 10.0], [0.0, 10.0]]
),
frame_stack_size=config["env"].get("frame_stack_size", 1),
)
# initialize the environment for evaluation callback
env_eval = init_gym(
gym_name="EvaluationGym",
logs_path=logs_path,
video_path=None,
render_mode=config["env"].get("render_mode", "rgb_array"),
max_episode_steps=config["train"].get("max_episode_steps", 2000),
walls=config["env"].get("walls", []),
goal_size=config["env"].get("goal_size", 1.0),
agent_location_range=config["env"].get(
"agent_location_range", [[0.0, 10.0], [0.0, 10.0]]
),
goal_location_range=config["env"].get(
"goal_location_range", [[0.0, 10.0], [0.0, 10.0]]
),
frame_stack_size=config["env"].get("frame_stack_size", 1),
)
# Set up logging for training progress
callback, logger = setup_logging(
env_eval,
logs_path,
output_path,
max_no_improvement_evals=config["train"].get("max_no_improvement_evals", 1000),
eval_freq=config["train"].get("eval_freq", 1000),
)
if config["setup"]["continue_training"] and os.path.exists(input_path):
print("Loading existing model")
# Load the existing model for further training
replay_buffer_path = os.path.join(input_path, "replay_buffer")
model = load_model(
env,
input_path,
replay_buffer=replay_buffer_path,
logger=logger,
learning_rate=config["train"]["learning_rate"],
)
else:
print("Creating a new model")
# Create a new model for training
model = init_model(
env=env,
policy_kwargs=config["train"]["policy_kwargs"],
learning_rate=config["train"]["learning_rate"],
logger=logger,
)
# Train the model
model.learn(
total_timesteps=config["train"]["timesteps"],
reset_num_timesteps=False,
callback=callback,
)
# Save the replay buffer and configuration
model.save_replay_buffer(os.path.join(output_path, "replay_buffer"))
save_config(config, output_path)
env.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train the RL model.")
parser.add_argument(
"--config_path",
type=str,
default="config.yaml",
help="config file for your model",
)
args = parser.parse_args()
with open(args.config_path, "r") as file:
config = yaml.safe_load(file)
custom_training(config)