-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
208 lines (167 loc) · 8.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import glob
import random
import json
import pickle
import numpy as np
import cv2
from keras.utils import to_categorical
from keras.callbacks import Callback
from keras.layers import concatenate
from keras.layers.core import Lambda
from keras.models import Model
from keras.utils.data_utils import Sequence
from keras import backend as K
import tensorflow as tf
class WeightedCrossentropy:
def __init__(self):
self.class_weights = pickle.load(open('class_weights.p', 'rb'))
def loss(self, y_true, y_pred):
loss = K.categorical_crossentropy(y_true, y_pred)
labels = np.argmax(y_true, axis=-1)
return loss * self.class_weights[labels]
class MapillaryGenerator(Sequence):
def __init__(self, folder='datasets/mapillary', mode='training', n_classes=66, batch_size=3, resize_shape=(640, 320),
crop_shape=(224, 224), horizontal_flip=True, vertical_flip=False, brightness=0.1, rotation=5, zoom=0.1):
self.image_path_list = sorted(glob.glob(os.path.join(folder, mode, 'images/*')))
self.label_path_list = sorted(glob.glob(os.path.join(folder, mode, 'instances/*')))
self.mode = mode
self.n_classes = n_classes
self.batch_size = batch_size
self.resize_shape = resize_shape
self.crop_shape = crop_shape
self.horizontal_flip = horizontal_flip
self.vertical_flip = vertical_flip
self.brightness = brightness
self.rotation = rotation
self.zoom = zoom
# Preallocate memory
if mode == 'training' and self.crop_shape:
self.X = np.zeros((batch_size, crop_shape[1], crop_shape[0], 3), dtype='float32')
self.Y = np.zeros((batch_size, crop_shape[1], crop_shape[0], self.n_classes), dtype='float32')
else:
self.X = np.zeros((batch_size, resize_shape[1], resize_shape[0], 3), dtype='float32')
self.Y = np.zeros((batch_size, resize_shape[1], resize_shape[0], self.n_classes), dtype='float32')
def __len__(self):
return len(self.image_path_list) // self.batch_size
def __getitem__(self, i):
images = [cv2.resize(cv2.imread(image_path, 1), self.resize_shape) for image_path in self.image_path_list[i*self.batch_size:(i+1)*self.batch_size]]
labels = [cv2.resize(cv2.imread(label_path, 0), self.resize_shape) for label_path in self.label_path_list[i*self.batch_size:(i+1)*self.batch_size]]
n = 0
for image, label in zip(images, labels):
# Do augmentation (only if training)
if self.mode == 'training':
if self.horizontal_flip and random.randint(0,1):
image = cv2.flip(image, 1)
label = cv2.flip(label, 1)
if self.vertical_flip and random.randint(0,1):
image = cv2.flip(image, 0)
label = cv2.flip(label, 0)
if self.brightness:
factor = 1.0 + abs(random.gauss(mu=0, sigma=self.brightness))
if random.randint(0,1):
factor = 1.0/factor
image = (255.0*((image/255.0)**factor)).astype(np.uint8)
if self.rotation:
angle = random.gauss(mu=0.0, sigma=self.rotation)
else:
angle = 0.0
if self.zoom:
scale = random.gauss(mu=1.0, sigma=self.zoom)
else:
scale = 1.0
if self.rotation or self.zoom:
M = cv2.getRotationMatrix2D((self.resize_shape[0]/2, self.resize_shape[1]/2), angle, scale)
image = cv2.warpAffine(image, M, self.resize_shape)
label = cv2.warpAffine(label, M, self.resize_shape)
if self.crop_shape:
image, label = _random_crop(image, label, self.crop_shape)
self.X[n] = image
self.Y[n] = to_categorical(label, self.n_classes).reshape((label.shape[0], label.shape[1], -1))
n += 1
return self.X, self.Y
def on_epoch_end(self):
# Shuffle dataset for next epoch
c = list(zip(self.image_path_list, self.label_path_list))
random.shuffle(c)
self.image_path_list, self.label_path_list = zip(*c)
class Visualization(Callback):
def __init__(self, resize_shape=(640, 360), batch_steps=10, n_gpu=1, **kwargs):
super(Visualization, self).__init__(**kwargs)
self.resize_shape = resize_shape
self.batch_steps = batch_steps
self.n_gpu = n_gpu
self.counter = 0
# TODO: Remove this lazy hardcoded paths
self.test_images_list = glob.glob('datasets/mapillary/testing/images/*')
with open('datasets/mapillary/config.json') as config_file:
config = json.load(config_file)
self.labels = config['labels']
def on_batch_end(self, batch, logs={}):
self.counter += 1
if self.counter == self.batch_steps:
self.counter = 0
test_image = cv2.resize(cv2.imread(random.choice(self.test_images_list), 1), self.resize_shape)
inputs = [test_image]*self.n_gpu
output = self.model.predict(np.array(inputs), batch_size=self.n_gpu)[0]
cv2.imshow('input', test_image)
cv2.waitKey(1)
cv2.imshow('output', _apply_color_map(np.argmax(output, axis=-1), self.labels))
cv2.waitKey(1)
class ExpDecay:
def __init__(self, initial_lr, decay):
self.initial_lr = initial_lr
self.decay = decay
def scheduler(self, epoch):
return self.initial_lr * np.exp(-self.decay*epoch)
# Taken from https://github.com/kuza55/keras-extras/blob/master/utils/multi_gpu.py
def make_parallel(model, gpu_count):
if gpu_count < 2:
return model
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat([ shape[:1] // parts, shape[1:] ],axis=0)
stride = tf.concat([ shape[:1] // parts, shape[1:]*0 ],axis=0)
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
#Place a copy of the model on each GPU, each getting a slice of the batch
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
inputs = []
#Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
#Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs in outputs_all:
merged.append(concatenate(outputs, axis=0))
return Model(inputs=model.inputs, outputs=merged)
# Taken from Mappillary Vistas demo.py
def _apply_color_map(image_array, labels):
color_array = np.zeros((image_array.shape[0], image_array.shape[1], 3), dtype=np.uint8)
for label_id, label in enumerate(labels):
# set all pixels with the current label to the color of the current label
color_array[image_array == label_id] = label["color"]
return color_array
def _random_crop(image, label, crop_shape):
if (image.shape[0] != label.shape[0]) or (image.shape[1] != label.shape[1]):
raise Exception('Image and label must have the same dimensions!')
if (crop_shape[0] < image.shape[1]) and (crop_shape[1] < image.shape[0]):
x = random.randrange(image.shape[1]-crop_shape[0])
y = random.randrange(image.shape[0]-crop_shape[1])
return image[y:y+crop_shape[1], x:x+crop_shape[0], :], label[y:y+crop_shape[1], x:x+crop_shape[0]]
else:
raise Exception('Crop shape exceeds image dimensions!')