-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdeploy.py
144 lines (116 loc) · 4.75 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import os.path as osp
import shutil
import subprocess
import argparse
import tensorflow as tf
import keras
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import tag_constants, signature_constants, signature_def_utils
from tensorflow.python.saved_model import utils as saved_model_utils
from tensorflow.contrib.session_bundle import exporter
from keras import backend as K
import numpy as np
from options import Options
height = 244
width = 244
channels = 3
def preprocess_input(tf_image):
r, g, b = tf.split(tf_image, num_or_size_splits=3, axis=3)
# Zero-center by mean pixel
b -= 103.939
g -= 116.779
r -= 123.68
# 'RGB'->'BGR'
data = tf.concat([b, g, r], 3)
return data
def build_signature(inputs, outputs):
"""Build the signature.
Not using predic_signature_def in saved_model because it is replacing the
tensor name, b/35900497.
Args:
inputs: a dictionary of tensor name to tensor
outputs: a dictionary of tensor name to tensor
Returns:
The signature, a SignatureDef proto.
"""
signature_inputs = {key: saved_model_utils.build_tensor_info(tensor) for key, tensor in inputs.items()}
signature_outputs = {key: saved_model_utils.build_tensor_info(tensor) for key, tensor in outputs.items()}
signature_def = signature_def_utils.build_signature_def(
signature_inputs, signature_outputs,
signature_constants.PREDICT_METHOD_NAME)
return signature_def
def decode_and_resize(image_str_tensor):
"""Decodes jpeg string, resizes it and returns a uint8 tensor."""
image = tf.image.decode_jpeg(image_str_tensor, channels=channels)
# Note resize expects a batch_size, but tf_map supresses that index,
# thus we have to expand then squeeze. Resize returns float32 in the
# range [0, uint8_max]
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(
image, [height, width], align_corners=False)
image = tf.squeeze(image, squeeze_dims=[0])
image = tf.cast(image, dtype=tf.uint8)
return image
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Deploy model to gcloud')
parser.add_argument('-t', '--trained_model', default='model_best_weights.h5',
type=str,
help='trained model location')
parser.add_argument('-m', '--model_dir', default='./checkpoints/2017-10-04_experiment_0/',
type=str,
help='model directory')
parser.add_argument('-b', '--bucket_dir', default='gs://dlhk-flower.appspot.com',
type=str,
help='gcloud storage bucket')
args = parser.parse_args()
K.set_learning_phase(bool(0))
tf_model_path = osp.join(args.model_dir, 'export')
try:
# remove old model file
print('removing {}'.format(tf_model_path))
shutil.rmtree(tf_model_path)
except:
pass
builder = saved_model_builder.SavedModelBuilder(tf_model_path)
image_str_tensor = tf.placeholder(tf.string, shape=[None])
image = tf.map_fn(
decode_and_resize, image_str_tensor, back_prop=False, dtype=tf.uint8)
# convert_image_dtype, also scales [0, uint8_max] -> [0 ,1).
image = tf.cast(image, dtype=tf.float32)
# setting up, options contains all our params
options = Options(library=0, # use keras
configs=2, # use resnet50 model
transform=1) # use transform for resnet50
# load the weight file
options.load = True
options.load_file = osp.join(args.model_dir, args.trained_model)
input_tensor = preprocess_input(image)
# initialize model
model = options.FlowerClassificationModel(options, input_tensor=input_tensor)
my_model = model.model
keys_placeholder = tf.placeholder(tf.string, shape=[None])
inputs = {
'key': keys_placeholder,
'image_bytes': image_str_tensor
}
# To extract the id, we need to add the identity function.
keys = tf.identity(keys_placeholder)
outputs = {
'key': keys,
'prediction': my_model.output,
}
signature_def = build_signature(inputs=inputs, outputs=outputs)
signature_def_map = {
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_def
}
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map=signature_def_map)
builder.save()
print("Saved")
subprocess.call(['gsutil', 'cp','-r', tf_model_path, args.bucket_dir])