-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.py
executable file
·361 lines (265 loc) · 14.6 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This defines a general "Model", i.e. architecture and decoding operations. It is an abstract base class for all models,
e.g. the baseline softmax model or the ensemble Tanh model
"""
import os
import tensorflow as tf
# tf.compat.v1.disable_eager_execution()
tf.enable_eager_execution()
tf.config.experimental_run_functions_eagerly(True)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from cleverhans.utils_keras import KerasModelWrapper as CleverHansKerasModelWrapper
from tensorflow.keras.layers import BatchNormalization, Dropout, Lambda, Input, Dense, Conv2D, Flatten, Activation, Concatenate, GaussianNoise
# from tensorflow.keras.utils import plot_model
from tensorflow.keras import regularizers
from tensorflow.keras.models import load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import Callback
import pickle
import numpy as np
from tensorflow.keras.models import Model as KerasModel
from ClassBlender import ClassBlender
from DataAugmenter import DataAugmenter
from Clipper import Clipper
from Grayscaler import Grayscaler
from sbp_lwta_con2d_layer import SB_Conv2d
from sbp_lwta_dense_layer import SB_Layer
from lwta_conv2d_activation import LWTA_Conv2D_Activation
from lwta_dense_activation import LWTA_Dense_Activation
class WeightsSaver(Callback):
def __init__(self, N):
self.N = N
self.epoch = 0
def specifyFilePath(self, path):
self.full_path = path #full path to file, including file name
def on_epoch_end(self, epoch, logs={}):
if self.epoch % self.N == 0:
print("SAVING WEIGHTS")
w= self.model.get_weights()
# pklfile= self.full_path + '_' + str(self.epoch) + '.pkl'
pklfile= self.full_path + '_' + 'final' + '.pkl'
fpkl= open(pklfile, 'wb')
pickle.dump(w, fpkl)
fpkl.close()
self.epoch += 1
#Abstract base class for all model classes
class Model(object):
def __init__(self, data_dict, params_dict):
self.data_dict = data_dict
self.params_dict = params_dict
self.input = Input(shape=self.params_dict['inp_shape'], name='input')
self.TRAIN_FLAG=1
self.encodeData()
#map categorical class labels (numbers) to encoded (e.g., one hot or ECOC) vectors
def encodeData(self):
self.Y_train = np.zeros((self.data_dict['X_train'].shape[0], self.params_dict['M'].shape[1]))
self.Y_test = np.zeros((self.data_dict['X_test'].shape[0], self.params_dict['M'].shape[1]))
for k in np.arange(self.params_dict['M'].shape[1]):
self.Y_train[:,k] = self.params_dict['M'][self.data_dict['Y_train_cat'], k]
self.Y_test[:,k] = self.params_dict['M'][self.data_dict['Y_test_cat'], k]
#define the neural network
def defineModel(self):
outputs=[]
self.penultimate = []
self.penultimate2 = []
n = int(self.params_dict['M'].shape[1]/self.params_dict['num_chunks'])
for k in np.arange(0,self.params_dict['num_chunks']):
x = self.input
if self.params_dict['inp_shape'][2]>1:
x_gs = Grayscaler()(x)
else:
x_gs = x
if (self.TRAIN_FLAG==1):
x = GaussianNoise(self.params_dict['noise_stddev'], input_shape=self.params_dict['inp_shape'])(x)
x_gs = GaussianNoise(self.params_dict['noise_stddev'], input_shape=self.params_dict['inp_shape'])(x_gs)
if self.params_dict['DATA_AUGMENTATION_FLAG']>0:
x = DataAugmenter(self.params_dict['batch_size'])(x)
x_gs = DataAugmenter(self.params_dict['batch_size'])(x_gs)
x = ClassBlender(self.params_dict['blend_factor'], self.params_dict['batch_size'])(x)
x_gs = ClassBlender(self.params_dict['blend_factor'], self.params_dict['batch_size'])(x_gs)
#x = Lambda(lambda x: x-0.5)(x)
x = Clipper()(x)
x_gs = Clipper()(x_gs)
#for CIFAR10
# x.set_shape([x.shape[0], 32,32,3])
# x_gs.set_shape([x_gs.shape[0], 32,32,1])
#for MNIST
x.set_shape([x.shape[0], 28,28,1])
x_gs.set_shape([x_gs.shape[0], 28,28,1])
for rep in np.arange(self.params_dict['model_rep']):
x = Conv2D(self.params_dict['num_filters_ens'][0], (5,5), activation='linear', padding='same')(x)
#x = sbp_lwta_con2d_layer.SB_Conv2d(ksize=[5,5,int(self.params_dict['num_filters_ens'][0]//2),2],activation='lwta',sbp=False)(x)
x,_ = LWTA_Conv2D_Activation()(x)
if self.params_dict['BATCH_NORMALIZATION_FLAG']>0:
x = BatchNormalization()(x)
x = Conv2D(self.params_dict['num_filters_ens'][0], (3,3), strides=(2,2), activation='linear', padding='same')(x)
#x = sbp_lwta_con2d_layer.SB_Conv2d(ksize=[3,3,int(self.params_dict['num_filters_ens'][0]//2),2],activation='lwta',sbp=False)(x)
x,_ = LWTA_Conv2D_Activation()(x)
if self.params_dict['BATCH_NORMALIZATION_FLAG']>0:
x = BatchNormalization()(x)
for rep in np.arange(self.params_dict['model_rep']):
x = Conv2D(self.params_dict['num_filters_ens'][1], (3, 3), activation='linear', padding='same')(x)
#x = sbp_lwta_con2d_layer.SB_Conv2d(ksize=[3,3,int(self.params_dict['num_filters_ens'][1]//2),2],activation='lwta',sbp=False)(x)
x,_ = LWTA_Conv2D_Activation()(x)
if self.params_dict['BATCH_NORMALIZATION_FLAG']>0:
x = BatchNormalization()(x)
x = Conv2D(self.params_dict['num_filters_ens'][1], (3,3), strides=(2,2), activation='linear', padding='same')(x)
x,_ = LWTA_Conv2D_Activation()(x)
if self.params_dict['BATCH_NORMALIZATION_FLAG']>0:
x = BatchNormalization()(x)
for rep in np.arange(self.params_dict['model_rep']):
x = Conv2D(self.params_dict['num_filters_ens'][2], (3, 3), activation='linear', padding='same')(x)
x,_ = LWTA_Conv2D_Activation()(x)
if self.params_dict['BATCH_NORMALIZATION_FLAG']>0:
x = BatchNormalization()(x)
x = Conv2D(self.params_dict['num_filters_ens'][2], (3,3), strides=(2,2), activation='linear', padding='same')(x)
x,_ = LWTA_Conv2D_Activation()(x)
#x = BatchNormalization()(x)
pens = []
out=[]
for k2 in np.arange(n):
x0 = Conv2D(self.params_dict['num_filters_ens_2'], (5, 5), strides=(2,2), activation='linear', padding='same')(x_gs)
x0,_ = LWTA_Conv2D_Activation()(x0)
x0 = Conv2D(self.params_dict['num_filters_ens_2'], (3, 3), strides=(2,2), activation='linear', padding='same')(x0)
x0,_ = LWTA_Conv2D_Activation()(x0)
x0 = Conv2D(self.params_dict['num_filters_ens_2'], (3, 3), strides=(2,2), activation='linear', padding='same')(x0)
x0,_ = LWTA_Conv2D_Activation()(x0)
x_= Concatenate()([x0, x])
x_ = Conv2D(self.params_dict['num_filters_ens_2'], (2, 2), activation='linear', padding='same')(x_)
x_,_ = LWTA_Conv2D_Activation()(x_)
x_ = Conv2D(self.params_dict['num_filters_ens_2'], (2, 2), activation='linear', padding='same')(x_)
x_,_ = LWTA_Conv2D_Activation()(x_)
x_ = Flatten()(x_)
x_ = Dense(16, activation='linear')(x_)
x_,_ = LWTA_Dense_Activation()(x_)
x_ = Dense(8, activation='linear')(x_)
x_,_ = LWTA_Dense_Activation()(x_)
x_ = Dense(4, activation='linear')(x_)
x_,_ = LWTA_Dense_Activation()(x_)
x0 = Dense(2, activation='linear')(x_)
x0,_ = LWTA_Dense_Activation()(x0)
pens += [x0]
# x1 = Dense(1, activation='linear', name='w_'+str(k)+'_'+str(k2)+'_'+self.params_dict['name'], kernel_regularizer=regularizers.l2(0.0))(x0)
x1 = SB_Layer(K=1,U=1,activation='none',sbp=False)(x0)
out += [x1]
self.penultimate += [pens]
if len(pens) > 1:
self.penultimate2 += [Concatenate()(pens)]
else:
self.penultimate2 += pens
if len(out)>1:
outputs += [Concatenate()(out)]
else:
outputs += out
self.model = KerasModel(inputs=self.input, outputs=outputs)
print(self.model.summary())
# plot_model(self.model, to_file=self.params_dict['model_path'] + '/' + self.params_dict['name'] + '.png')
return outputs
def defineLoss(self):
error = "Sub-classes must implement defineLoss."
raise NotImplementedError(error)
def defineMetric(self):
error = "Sub-classes must implement defineMetric."
raise NotImplementedError(error)
def trainModel(self):
opt = Adam(lr=self.params_dict['lr'])
self.loadModel()
self.model.compile(optimizer=opt, loss=[self.defineLoss(k) for k in np.arange(self.params_dict['num_chunks'])], metrics=self.defineMetric())
WS = WeightsSaver(self.params_dict['weight_save_freq'])
WS.specifyFilePath(self.params_dict['model_path'] + self.params_dict['name'])
Y_train_list=[]
Y_test_list=[]
start = 0
for k in np.arange(self.params_dict['num_chunks']):
end = start + int(self.params_dict['M'].shape[1]/self.params_dict['num_chunks'])
Y_train_list += [self.Y_train[:,start:end]]
Y_test_list += [self.Y_test[:,start:end]]
start=end
self.model.fit(self.data_dict['X_train'], Y_train_list,
epochs=self.params_dict['epochs'],
batch_size=self.params_dict['batch_size'],
shuffle=True,
validation_data=[self.data_dict['X_test'], Y_test_list],
callbacks=[WS])
self.saveModel()
def resumeTrainModel(self):
Y_train_list=[]
Y_test_list=[]
start = 0
for k in np.arange(self.params_dict['num_chunks']):
end = start + int(self.params_dict['M'].shape[1]/self.params_dict['num_chunks'])
Y_train_list += [self.Y_train[:,start:end]]
Y_test_list += [self.Y_test[:,start:end]]
start=end
def hinge_loss(y_true, y_pred):
loss = tf.reduce_mean(tf.maximum(1.0-y_true*y_pred, 0))
return loss
def hinge_pred(y_true, y_pred):
corr = tf.to_float((y_pred*y_true)>0)
return tf.reduce_mean(corr)
self.model = load_model(self.params_dict['model_path'] + self.params_dict['name'] + '_final.h5', custom_objects={'DataAugmenter':DataAugmenter, 'ClassBlender':ClassBlender, 'Clipper':Clipper, 'Grayscaler':Grayscaler, 'hinge_loss':hinge_loss, 'hinge_pred':hinge_pred})
WS = WeightsSaver(self.params_dict['weight_save_freq'])
WS.specifyFilePath(self.params_dict['model_path'] + self.params_dict['name'])
self.model.fit(self.data_dict['X_train'], Y_train_list,
epochs=self.params_dict['epochs'],
batch_size=self.params_dict['batch_size'],
shuffle=True,
validation_data=[self.data_dict['X_test'], Y_test_list],
callbacks=[WS])
self.saveModel()
#this function takes the output of the NN and maps into logits (which will be passed into softmax to give a prob. dist.)
#It effectively does a Hamming decoding by taking the inner product of the output with each column of the coding matrix (M)
#obviously, the better the match, the larger the dot product is between the output and a given row
#it is simply a log ReLU on the output
def outputDecoder(self, x):
mat1 = tf.matmul(x, self.params_dict['M'], transpose_b=True)
mat1 = tf.log(tf.maximum(mat1, 0)+1e-6) #floor negative values
return mat1
def defineFullModel(self):
self.TRAIN_FLAG=0
outputs = self.defineModel()
if len(outputs)>1:
self.raw_output = Concatenate()(outputs)
else: #if only a single chunk
self.raw_output = outputs[0]
#pass output logits through activation
for idx,o in enumerate(outputs):
outputs[idx] = Lambda(self.params_dict['output_activation'])(o)
if len(outputs)>1:
x = Concatenate()(outputs)
else: #if only a single chunk
x = outputs[0]
x = Lambda(self.outputDecoder)(x) #logits
x = Activation('softmax')(x) #return probs
if self.params_dict['base_model'] == None:
self.model_full = KerasModel(inputs=self.input, outputs=x)
else:
self.model_full = KerasModel(inputs=self.params_dict['base_model'].input, outputs=x)
#CleverHans model wrapper; returns a model that CH can attack
def modelCH(self):
return CleverHansKerasModelWrapper(self.model_full)
def saveModel(self):
w = self.model.get_weights()
pklfile= self.params_dict['model_path'] + self.params_dict['name'] + '_final.pkl'
fpkl= open(pklfile, 'wb')
pickle.dump(w, fpkl)
fpkl.close()
self.model.save(self.params_dict['model_path'] + self.params_dict['name'] + '_final.h5')
def loadModel(self):
pklfile= self.params_dict['model_path'] + self.params_dict['name'] + '_final.pkl'
f= open(pklfile, 'rb')
weigh= pickle.load(f);
f.close();
self.defineModel()
self.model.set_weights(weigh)
def loadFullModel(self):
pklfile= self.params_dict['model_path'] + self.params_dict['name'] + '_final.pkl'
f= open(pklfile, 'rb')
weigh= pickle.load(f);
f.close();
self.defineFullModel()
self.model_full.set_weights(weigh)
def predict(self, X):
return self.model_full(X)