-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaUtilities.py
145 lines (128 loc) · 6.61 KB
/
evaUtilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import math
import operator
import numpy as np
def _convert_to_float(fl):
""" This method converts ONLY the numeric values of a string into floats """
try:
return float(fl)
except (ValueError, TypeError):
return fl
def _wrap_to_pi(angle):
""" This method wrap the input angle to 360 [deg]
angle : [deg] """
ang2pi = angle - (angle // (2 * np.pi)) * 2 * np.pi
if ang2pi > np.pi or ang2pi < - np.pi:
ang = ang2pi - np.sign(ang2pi) * 2 * np.pi
return ang
def _quaternion_multiply(quat1, quat0):
""" This method performs a standard quaternion multiplication
quat0 : [qR0, qV0], with qR0 being the real part of the quaternion
quat1 : [qR1, qV1], with qR1 being the real part of the quaternion """
w0, x0, y0, z0 = quat0
w1, x1, y1, z1 = quat1
return np.array([-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0,
x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0,
-x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0,
x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0], dtype=np.float64)
def _solve_fk(eva, joints):
""" This method solves the forward kinematics problem and extract the results directly as an array
joints : joint angles in [rad]
pos : cartesian position, with respect to robot's origin [m]
orient : orientation quaternion of the end effector """
fk_results = eva.calc_forward_kinematics(joints)
pos_json = fk_results['position']
orient_json = fk_results['orientation']
pos = [pos_json['x'], pos_json['y'], pos_json['z']]
orient = [orient_json['w'], orient_json['x'], orient_json['y'], orient_json['z']]
return pos, orient
def solve_ik_head_down(eva, guess, theta, xyz_absolute):
""" This method solves the inverse kinematics problem for the special case of the end-effector
pointing downwards, perpendicular to the ground.
guess : is the IK guess, a 1x6 array of joint angles in [rad]
theta : angular rotation of axis 6 [deg]
xyz_absolute : cartesian position, with respect to robot's origin [m] """
pos = [xyz_absolute[0], xyz_absolute[1], xyz_absolute[2]] # [m]
pos_json = {'x': (pos[0]), 'y': (pos[1]), 'z': (pos[2])} # [m]
orient_rel = [math.cos(np.deg2rad(theta) / 2), 0, 0, math.sin(np.deg2rad(theta) / 2)]
orient_abs = _quaternion_multiply([0, 0, 1, 0], orient_rel)
orient_json = {'w': (orient_abs[0]), 'x': (orient_abs[1]), 'y': (orient_abs[2]), 'z': (orient_abs[3])}
# Compute IK
result_ik = eva.calc_inverse_kinematics(guess, pos_json, orient_json)
success_ik = result_ik['ik']['result']
joints_ik = result_ik['ik']['joints']
return success_ik, joints_ik
def read_tcp_ip(sock, objects):
""" This method reads and decodes the string sent from the camera """
result = sock.recv(4000)
string_read = result.decode('utf-8')
string_split = string_read.split(",")
camera_string_raw = list(string_split)
passed = False
camera_string = ['']
if len(camera_string_raw) is not 0:
if camera_string_raw[0] == 'start' and camera_string_raw[19] == 'end' and len(camera_string_raw) == 20:
camera_string_raw = [_convert_to_float(fl) for fl in camera_string_raw]
passes = [camera_string_raw[6], camera_string_raw[12], camera_string_raw[18]]
scores = [camera_string_raw[5], camera_string_raw[11], camera_string_raw[17]]
passed_score = [passes[0] * scores[0], passes[1] * scores[1], passes[2] * scores[2]]
max_index, max_value = max(enumerate(passed_score), key=operator.itemgetter(1))
select_obj = objects[max_index]
if max_value > 0:
passed = True
# Extract the best matching object from the string
camera_string = _extract_camera_serial(objects, select_obj, camera_string_raw)
# String format = ['start', 'object_name', float x_mm, float y_mm, float angle]
return passed, camera_string
def _extract_camera_serial(objects, index, camera_string_raw):
""" This method extracts only the best matching object data from the entire string """
camera_string = ['', 0, 0, 0, 0]
if index not in objects:
print('Wrong object in the list')
elif index is 'C':
camera_string[0] = 'start'
camera_string[1] = camera_string_raw[1]
camera_string[2] = camera_string_raw[2]
camera_string[3] = camera_string_raw[3]
camera_string[4] = camera_string_raw[4]
elif index is 'M':
camera_string[0] = 'start'
camera_string[1] = camera_string_raw[7]
camera_string[2] = camera_string_raw[8]
camera_string[3] = camera_string_raw[9]
camera_string[4] = camera_string_raw[10]
elif index is 'R':
camera_string[0] = 'start'
camera_string[1] = camera_string_raw[13]
camera_string[2] = camera_string_raw[14]
camera_string[3] = camera_string_raw[15]
camera_string[4] = camera_string_raw[16]
return camera_string
class EvaVision:
""" This class performs the machine vision operations in order to obtain the object position in Eva's frame """
def __init__(self, eva, string, cal_zero, obj_height=0.0, surf_height=0.0, ee_length=0.0):
self.eva = eva
self.string = string
self.cal = cal_zero
self.obj = obj_height
self.surf = surf_height
self.ee = ee_length
def locate_object(self):
print('Pattern identified is: ', self.string[1])
# Relative object position in camera frame:
x_obj_rel_cam = 0.001*self.string[2] # transform X value from [mm] into [m]
y_obj_rel_cam = 0.001*self.string[3] # transform Y value from [mm] into [m]
# Compute relative object position in Eva's frame:
# Need to known Eva's frame rotation wrt to camera frame
# Convention: start from camera frame and rotate of ang [deg] to get to Eva's frame
ang_cam = 180 # [deg]
x_obj_rel = np.cos(np.deg2rad(ang_cam)) * x_obj_rel_cam + np.sin(np.deg2rad(ang_cam)) * y_obj_rel_cam # [m]
y_obj_rel = -np.sin(np.deg2rad(ang_cam)) * x_obj_rel_cam + np.cos(np.deg2rad(ang_cam)) * y_obj_rel_cam # [m]
# Compute absolute object position of calibration board origin in Eva's frame:
pos_cal = self.eva.calc_forward_kinematics(self.cal)['position']
# Compute absolute object position by summing the calibration board origin to the relative object position
x_obj_abs = x_obj_rel + pos_cal['x'] # [m]
y_obj_abs = y_obj_rel + pos_cal['y'] # [m]
# Compute absolute value of Z
z_obj_abs = abs(self.obj) + self.surf + abs(self.ee)
pos_abs = [x_obj_abs, y_obj_abs, z_obj_abs]
return pos_abs