-
Notifications
You must be signed in to change notification settings - Fork 1
/
benchmark.py
362 lines (259 loc) · 10.6 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import datetime
import multiprocessing as mp
import pickle
import sys
import time
from math import sqrt
from timeit import default_timer as timer
import timeit
import dask.multiprocessing
#import findspark
import numba
import numba.cuda.api
import numba.cuda.cudadrv.libs
import numpy as np
from dask import compute, delayed
# https://github.com/numba/numba/tree/master/examples
# https://developer.nvidia.com/how-to-cuda-python
from minisom import MiniSom
from numba import cuda, jit, njit, vectorize
from numpy import (arange, array, dot, exp, linalg, logical_and, meshgrid,
nditer, outer, pi, power, random, subtract, unravel_index,
zeros)
from scipy import spatial
from sparsenlp.datacleaner import DataCleaner
from sparsenlp.fingerprint import FingerPrint
from sparsenlp.datasets import Datasets
from sparsenlp.sentencecluster import SentenceCluster
from sparsenlp.sentencesvect import SentenceVect
#numba.cuda.cudadrv.libs.test()
#numba.cuda.api.detect()
# nvprof python .\vectorAdd.py
def fast_norm_without_numba(x):
"""Returns norm-2 of a 1-D numpy array.
* faster than linalg.norm in case of 1-D arrays (numpy 1.9.2rc1).
"""
#idx = np.array(np.linalg.norm(x))
#return idx
return sqrt(np.dot(x, x.T))
@njit
def fast_norm(x):
"""Returns norm-2 of a 1-D numpy array.
* faster than linalg.norm in case of 1-D arrays (numpy 1.9.2rc1).
"""
#idx = np.array(np.linalg.norm(x))
#return idx
return sqrt(np.dot(x, x.T))
def _activate(codebook, x, with_numba):
"""Updates matrix activation_map, in this matrix
the element i,j is the response of the neuron i,j to x"""
_activation_map = zeros((128, 128))
s = subtract(x, codebook) # x - w
it = nditer(_activation_map, flags=['multi_index'])
if with_numba is True:
while not it.finished:
# || x - w ||
_activation_map[it.multi_index] = fast_norm(s[it.multi_index])
it.iternext()
else:
while not it.finished:
# || x - w ||
_activation_map[it.multi_index] = fast_norm_without_numba(s[it.multi_index])
it.iternext()
return _activation_map
def find_nearest_vector(codebook, value, with_numba=True):
_activation_map = _activate (codebook, value, with_numba)
a = unravel_index(_activation_map.argmin(), _activation_map.shape)
return a
#a = codebook-value
#return unravel_index(a.argmin(), a.shape)
def numba(codebook, word_vectors):
#run_parallel = numba.config.NUMBA_NUM_THREADS > 1
a = np.zeros((128, 128), dtype=np.int)
for word in word_vectors:
#print (word)
for key, value in word.items():
print (key, len(value))
#print (key, type(value), len(value))
for val in value:
idx = val['idx']
#bmu = SOM.winner(val['vector'])
bmu2 = find_nearest_vector(codebook, val['vector'])
#return {key: a}
var_dict = {}
def init_worker(H, W, N, codebook):
# Using a dictionary is not strictly necessary. You can also
# use global variables.
var_dict['H'] = H
var_dict['W'] = W
var_dict['N'] = N
var_dict['codebook'] = codebook
def create_fp(word_vectors):
#SOM = MiniSom(var_dict['H'], var_dict['W'], var_dict['N'], sigma=1.0, random_seed=1)
#SOM._weights = var_dict['codebook']
a = np.zeros((var_dict['H'], var_dict['W']), dtype=np.int)
for key, value in word_vectors.items():
#print (key, len(value))
for val in value:
idx = val['idx']
#bmu = SOM.winner(val['vector'])
bmu2 = find_nearest_vector(var_dict['codebook'], val['vector'])
#print(bmu)
#a[bmu[0], bmu[1]] += val['counts']
#return {key: a}
def multiprocess(codebook, word_vectors):
num_processes = mp.cpu_count() - 1
H = 128
W = 128
N = 50
with mp.Pool(processes=num_processes, initializer=init_worker, initargs=(H, W, N, codebook)) as pool:
results = pool.map(create_fp, word_vectors)
def process(codebook, word_vectors):
#a = np.zeros((128, 128), dtype=np.int)
for key, value in word_vectors.items():
#print (key, len(value))
for val in value:
idx = val['idx']
#bmu = SOM.winner(val['vector'])
bmu2 = find_nearest_vector(codebook, val['vector'])
def calculate_cKDTree (codebook, x):
distance, index = spatial.cKDTree(codebook).query(x)
return index
def find_nearest_vector_ckdtree(codebook, x, H, W):
#distance, index = spatial.cKDTree(codebook).query(x)
index = calculate_cKDTree(codebook, x)
bmu = unravel_index(index, codebook.shape)
return bmu
def process_ckdtree(codebook, word_vectors, H, W):
bmu = find_nearest_vector_ckdtree(codebook, word_vectors['vector'], H, W)
#for key, value in word_vectors.items():
# for val in value:
# idx = val['idx']
# bmu2 = find_nearest_vector_ckdtree(codebook, val['vector'], H, W)
def dask(codebook, word_vectors):
values = [delayed(process)(codebook, x) for x in word_vectors]
#import dask.threaded
#results = compute(*values, scheduler='threads')
results = compute(*values, scheduler='processes')
def ckdtree(codebook, word_vectors):
H = codebook.shape[0]
W = codebook.shape[1]
#print (word_vectors)
print (len(word_vectors))
#print (type(word_vectors))
codebook = np.reshape(codebook, (codebook.shape[0] * codebook.shape[1], codebook.shape[2]))
for x in word_vectors:
#print (x['vector'])
bmu = find_nearest_vector_ckdtree(codebook, x['vector'], H, W)
"""
codebook = np.reshape(codebook, (16384, 50))
values = [delayed(process_ckdtree)(codebook, x, H, W) for x in word_vectors]
import dask.multiprocessing
results = compute(*values, scheduler='processes')
"""
def sequential(codebook, word_vectors):
a = np.zeros((128, 128), dtype=np.int)
for word in word_vectors:
for key, value in word.items():
#print (key, len(value))
for val in value:
idx = val['idx']
#bmu = SOM.winner(val['vector'])
bmu2 = find_nearest_vector(codebook, val['vector'], False)
def main(mode, algo=None):
#global codebook
#SOM = MiniSom(128, 128, 50, sigma=1.0, random_seed=1)
with open('/dev/shm/codebook_6.npy', 'rb') as handle:
codebook = pickle.load(handle)
with open('/dev/shm/X_6.npz', 'rb') as handle:
X = pickle.load(handle)
with open('/dev/shm/snippets_by_word_6_EN-RG-65.pkl', 'rb') as handle:
snippets_by_word = pickle.load(handle)
if mode == 'fingerprints':
"""
opts = {'id': 26, 'paragraph_length': 300, 'dataextension': '3,4', 'n_features': 10000, 'n_components': 700,
'use_idf': False, 'use_hashing': False, 'use_glove': 'glove.6B.50d', 'algorithm': 'MINISOMBATCH',
'initialization': True, 'size': 128, 'niterations': 1000, 'minibatch': True, 'testdataset': 'EN-RG-65',
'verbose': False, 'date': '27-8-2018 9:51', 'create_vectors-minutes': 6.0, 'cluster-minutes': 7.0,
'create_fingerprints-minutes': 31.0, 'cosine': 0.632}
"""
opts = {}
opts['id'] = 6
opts['new_log'] = False
opts['sentecefolder'] = '/dev/shm/'
opts['algorithm'] = 'MINISOMBATCH'
#words = {'EN-RG-65': ['asylum', 'autograph', 'automobile']}
words = {'EN-RG-65': ['asylum']}
#vectors = SentenceVect(opts)
#X = vectors.create_vectors()
#snippets_by_word = vectors.create_word_snippets(words)
#mycluster = SentenceCluster(opts)
#codebook = mycluster.cluster(X)
fingerprints = FingerPrint(opts, algo)
fingerprints.create_fingerprints(snippets_by_word, X, codebook, fraction=1)
else:
#SOM._weights = codebook
words = ['asylum']
word_vectors = []
unique_indexes = set()
#print (words)
for word in words:
a = []
word_counts = snippets_by_word[word]
for info in word_counts[1:]:
idx = info['idx']
#print ('idx {}'.format(idx))
a.append({'idx': idx, 'counts': info['counts'], 'vector': X[idx]})
unique_indexes.add(idx)
word_vectors.append({word: a})
if mode == 'dask':
print(codebook.shape)
sys.exit(0)
eval(mode)(codebook, word_vectors)
elif mode == 'ckdtree':
unique_word_vectors = []
for idx in unique_indexes:
unique_word_vectors.append({'idx': idx, 'vector': X[idx]})
eval(mode)(codebook, unique_word_vectors)
#print (word_vectors[1]['asylum'][0]['vector'])
if __name__ == '__main__':
time1 = datetime.datetime.now()
mode = sys.argv[1]
if mode == 'fingerprints':
algo = sys.argv[2]
main(mode, algo)
else:
main(mode)
time2 = datetime.datetime.now()
print(time2 - time1)
"""
A = np.random.random((10, 10, 5))*100
print (A)
#pt = np.random.random((5))*100
#pt = np.array([29.65562651, 99.20112434, 24.94200411, 10.59061549, 95.09526111])
pt = np.array([49.03053465, 98.94097773, 6.53042072, 78.32344383, 28.83984973])
print ('------------------')
print(pt)
B = np.reshape(A, (A.shape[0] * A.shape[1], A.shape[2]))
print ('------------------')
print (B.shape)
print ('------------------')
distance, index = spatial.cKDTree(B).query(pt)
print(index)
bmu = unravel_index(index, (A.shape[0], A.shape[1]))
#bmu = unravel_index(index, B.shape)
print(bmu)
sys.exit(0)
"""
# https://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-array
# https://blog.krum.io/k-d-trees/
# https://stackoverflow.com/questions/10818546/finding-index-of-nearest-point-in-numpy-arrays-of-x-and-y-coordinates
# python -W ignore .\benchmark.py ckdtree (12 seg)
# python -W ignore .\benchmark.py dask (29 seg)
# python -W ignore .\benchmark.py numba (38 seg)
# python -W ignore .\benchmark.py multiprocess (31 seg)
# python -W ignore .\benchmark.py sequential (70 seg)
# python -W ignore .\benchmark.py fingerprints numba
# python -W ignore .\benchmark.py fingerprints ckdtree
# nvprof python .\benchmark.py numba
# check https://towardsdatascience.com/trying-out-dask-dataframes-in-python-for-fast-data-analysis-in-parallel-aa960c18a915