-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathrnaseqTools.py
272 lines (235 loc) · 10.7 KB
/
rnaseqTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import pylab as plt
import seaborn as sns
import pandas as pd
from scipy import sparse
def sparseload(filename, sep=',', dtype=float, chunksize=1000, index_col=0, droplastcolumns=0):
with open(filename) as file:
genes = []
sparseblocks = []
for i,chunk in enumerate(pd.read_csv(filename, chunksize=chunksize, sep=sep, index_col=index_col)):
print('.', end='', flush=True)
if i==0:
cells = np.array(chunk.columns)
genes.extend(list(chunk.index))
sparseblock = sparse.csr_matrix(chunk.values.astype(dtype))
sparseblocks.append([sparseblock])
counts = sparse.bmat(sparseblocks)
print(' done')
if droplastcolumns > 0:
end = cells.size - droplastcolumns
cells = cells[:end]
counts = counts[:,:end]
return (counts.T, np.array(genes), cells)
def geneSelection(data, threshold=0, atleast=10,
yoffset=.02, xoffset=5, decay=1.5, n=None,
plot=True, markers=None, genes=None, figsize=(6,3.5),
markeroffsets=None, labelsize=10, alpha=1, verbose=1):
if sparse.issparse(data):
zeroRate = 1 - np.squeeze(np.array((data>threshold).mean(axis=0)))
A = data.multiply(data>threshold)
A.data = np.log2(A.data)
meanExpr = np.zeros_like(zeroRate) * np.nan
detected = zeroRate < 1
meanExpr[detected] = np.squeeze(np.array(A[:,detected].mean(axis=0))) / (1-zeroRate[detected])
else:
zeroRate = 1 - np.mean(data>threshold, axis=0)
meanExpr = np.zeros_like(zeroRate) * np.nan
detected = zeroRate < 1
mask = data[:,detected]>threshold
logs = np.zeros_like(data[:,detected]) * np.nan
logs[mask] = np.log2(data[:,detected][mask])
meanExpr[detected] = np.nanmean(logs, axis=0)
lowDetection = np.array(np.sum(data>threshold, axis=0)).squeeze() < atleast
zeroRate[lowDetection] = np.nan
meanExpr[lowDetection] = np.nan
if n is not None:
up = 10
low = 0
for t in range(100):
nonan = ~np.isnan(zeroRate)
selected = np.zeros_like(zeroRate).astype(bool)
selected[nonan] = zeroRate[nonan] > np.exp(-decay*(meanExpr[nonan] - xoffset)) + yoffset
if np.sum(selected) == n:
break
elif np.sum(selected) < n:
up = xoffset
xoffset = (xoffset + low)/2
else:
low = xoffset
xoffset = (xoffset + up)/2
if verbose>0:
print('Chosen offset: {:.2f}'.format(xoffset))
else:
nonan = ~np.isnan(zeroRate)
selected = np.zeros_like(zeroRate).astype(bool)
selected[nonan] = zeroRate[nonan] > np.exp(-decay*(meanExpr[nonan] - xoffset)) + yoffset
if plot:
if figsize is not None:
plt.figure(figsize=figsize)
plt.ylim([0, 1])
if threshold>0:
plt.xlim([np.log2(threshold), np.ceil(np.nanmax(meanExpr))])
else:
plt.xlim([0, np.ceil(np.nanmax(meanExpr))])
x = np.arange(plt.xlim()[0], plt.xlim()[1]+.1,.1)
y = np.exp(-decay*(x - xoffset)) + yoffset
if decay==1:
plt.text(.4, 0.2, '{} genes selected\ny = exp(-x+{:.2f})+{:.2f}'.format(np.sum(selected),xoffset, yoffset),
color='k', fontsize=labelsize, transform=plt.gca().transAxes)
else:
plt.text(.4, 0.2, '{} genes selected\ny = exp(-{:.1f}*(x-{:.2f}))+{:.2f}'.format(np.sum(selected),decay,xoffset, yoffset),
color='k', fontsize=labelsize, transform=plt.gca().transAxes)
plt.plot(x, y, color=sns.color_palette()[1], linewidth=2)
xy = np.concatenate((np.concatenate((x[:,None],y[:,None]),axis=1), np.array([[plt.xlim()[1], 1]])))
t = plt.matplotlib.patches.Polygon(xy, color=sns.color_palette()[1], alpha=.4)
plt.gca().add_patch(t)
plt.scatter(meanExpr, zeroRate, s=1, alpha=alpha, rasterized=True)
if threshold==0:
plt.xlabel('Mean log2 nonzero expression')
plt.ylabel('Frequency of zero expression')
else:
plt.xlabel('Mean log2 nonzero expression')
plt.ylabel('Frequency of near-zero expression')
plt.tight_layout()
if markers is not None and genes is not None:
if markeroffsets is None:
markeroffsets = [(0, 0) for g in markers]
for num,g in enumerate(markers):
i = np.where(genes==g)[0]
plt.scatter(meanExpr[i], zeroRate[i], s=10, color='k')
dx, dy = markeroffsets[num]
plt.text(meanExpr[i]+dx+.1, zeroRate[i]+dy, g, color='k', fontsize=labelsize)
return selected
# Computing the matrix of Euclidean distances
def pdist2(A,B):
D = np.sum(A**2,axis=1,keepdims=True) + np.sum(B**2, axis=1, keepdims=True).T - 2*[email protected]
return D
import warnings
# Computing the matrix of correlations
def corr2(A,B):
A = A - A.mean(axis=1, keepdims=True)
B = B - B.mean(axis=1, keepdims=True)
ssA = (A**2).sum(axis=1, keepdims=True)
ssB = (B**2).sum(axis=1, keepdims=True)
# this ignores the NaN warnings. The result can have nans!
with warnings.catch_warnings():
warnings.simplefilter('ignore')
C = np.dot(A, B.T) / np.sqrt(np.dot(ssA,ssB.T))
return C
def map_to_tsne(referenceCounts, referenceGenes, newCounts, newGenes, referenceAtlas,
bootstrap = False, knn = 10, nrep = 100, seed = None, batchsize = 1000,
verbose = 1):
gg = sorted(list(set(referenceGenes) & set(newGenes)))
if verbose > 0:
print('Using a common set of ' + str(len(gg)) + ' genes.')
newGenes = [np.where(newGenes==g)[0][0] for g in gg]
refGenes = [np.where(referenceGenes==g)[0][0] for g in gg]
X = newCounts[:,newGenes]
if sparse.issparse(X):
X = np.array(X.todense())
X = np.log2(X + 1)
T = referenceCounts[:,refGenes]
if sparse.issparse(T):
T = np.array(T.todense())
T = np.log2(T + 1)
n = X.shape[0]
assignmentPositions = np.zeros((n, referenceAtlas.shape[1]))
batchCount = int(np.ceil(n/batchsize))
if (batchCount > 1) and (verbose > 0):
print('Processing in batches', end='', flush=True)
for b in range(batchCount):
if (batchCount > 1) and (verbose > 0):
print('.', end='', flush=True)
batch = np.arange(b*batchsize, np.minimum((b+1)*batchsize, n))
C = corr2(X[batch,:], T)
ind = np.argpartition(C, -knn)[:, -knn:]
for i in range(batch.size):
assignmentPositions[batch[i],:] = np.median(referenceAtlas[ind[i,:],:], axis=0)
if (batchCount > 1) and (verbose > 0):
print(' done', flush=True)
# Note: currently bootstrapping does not support batchsize
if bootstrap:
if seed is not None:
np.random.seed(seed)
assignmentPositions_boot = np.zeros((n, referenceAtlas.shape[1], nrep))
if verbose>0:
print('Bootstrapping', end='', flush=True)
for rep in range(nrep):
if verbose>0:
print('.', end='')
bootgenes = np.random.choice(T.shape[1], T.shape[1], replace=True)
C_boot = corr2(X[:,bootgenes],T[:,bootgenes])
ind = np.argpartition(C_boot, -knn)[:, -knn:]
for i in range(X.shape[0]):
assignmentPositions_boot[i,:,rep] = np.median(referenceAtlas[ind[i,:],:], axis=0)
if verbose>0:
print(' done')
return (assignmentPositions, assignmentPositions_boot)
else:
return assignmentPositions
def map_to_clusters(referenceCounts, referenceGenes,
newCounts, newGenes,
referenceClusters, referenceClusterNames=[], cellNames=[],
bootstrap = False, nrep = 100, seed = None, verbose = False, until=.95,
returnCmeans = False, totalClusters = None):
gg = sorted(list(set(referenceGenes) & set(newGenes)))
print('Using a common set of ' + str(len(gg)) + ' genes.')
newGenes = [np.where(newGenes==g)[0][0] for g in gg]
refGenes = [np.where(referenceGenes==g)[0][0] for g in gg]
X = newCounts[:,newGenes]
if sparse.issparse(X):
X = np.array(X.todense())
X = np.log2(X + 1)
T = referenceCounts[:,refGenes]
if sparse.issparse(T):
T = np.array(T.todense())
T = np.log2(T + 1)
if totalClusters is not None:
K = totalClusters
else:
K = np.max(referenceClusters) + 1
means = np.zeros((K, T.shape[1]))
for c in range(K):
if np.sum(referenceClusters==c) > 0:
means[c,:] = np.mean(T[referenceClusters==c,:], axis=0)
Cmeans = corr2(X, means)
allnans = np.sum(np.isnan(Cmeans), axis=1) == Cmeans.shape[1]
clusterAssignment = np.zeros(Cmeans.shape[0]) * np.nan
clusterAssignment[~allnans] = np.nanargmax(Cmeans[~allnans,:], axis=1)
if bootstrap:
if seed is not None:
np.random.seed(seed)
clusterAssignment_boot = np.zeros((X.shape[0], nrep), dtype=int)
for rep in range(nrep):
print('.', end='', flush=True)
bootgenes = np.random.choice(T.shape[1], T.shape[1], replace=True)
Cmeans_boot = corr2(X[:,bootgenes], means[:,bootgenes])
m = np.zeros(Cmeans.shape[0]) * np.nan
m[~allnans] = np.nanargmax(Cmeans_boot[~allnans,:], axis=1)
clusterAssignment_boot[:,rep] = m
print(' done')
clusterAssignment_matrix = np.zeros((X.shape[0], K))
for cell in range(X.shape[0]):
mapsto, mapsto_counts = np.unique(clusterAssignment_boot[cell,:], return_counts=True)
for i,m in enumerate(mapsto):
clusterAssignment_matrix[cell, m] = mapsto_counts[i] / nrep
if verbose:
for rownum,row in enumerate(clusterAssignment_matrix):
ind = np.argsort(row)[::-1]
ind = ind[:np.where(np.cumsum(row[ind]) >= until)[0][0] + 1]
mystring = []
for i in ind:
s = referenceClusterNames[i] + ' ({:.1f}%)'.format(100*row[i])
mystring.append(s)
mystring = cellNames[rownum] + ': ' + ', '.join(mystring)
print(mystring)
if returnCmeans:
return clusterAssignment, clusterAssignment_matrix, Cmeans
else:
return clusterAssignment, clusterAssignment_matrix
else:
if returnCmeans:
return clusterAssignment, Cmeans
else:
return clusterAssignment