-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path00_data_prep.R
93 lines (70 loc) · 2.72 KB
/
00_data_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
## data available
## @ http://www2.informatik.uni-freiburg.de/~cziegler/BX/BX-CSV-Dump.zip
library(tidyverse)
load_csv <- function(strng_path) {
csv_df <- read_delim(strng_path,
delim = ";", escape_double = FALSE, trim_ws = TRUE) %>%
janitor::clean_names()
return(csv_df)
}
ratings <- load_csv("csv_df/BX-Book-Ratings.csv")
books <- load_csv("csv_df/BX-Books.csv")
users <- load_csv("csv_df/BX-Users.csv")
books$isbn <- paste0("isbn_",books$isbn)
users$user_id <- paste0("user_",users$user_id)
ratings$isbn <- paste0("isbn_",ratings$isbn)
ratings$user_id <- paste0("user_",ratings$user_id)
n_distinct(ratings$isbn) # 204678
n_distinct(ratings$user_id) # 44778
table(ratings$book_rating)
book_rated_n_times <- ratings %>% group_by(isbn) %>%
summarise(n_reviews = n()) %>% arrange(desc(n_reviews))
head(book_rated_n_times, 20)
tail(book_rated_n_times, 20)
users_rated_n_times <- ratings %>% group_by(user_id) %>%
summarise(n_reviews = n()) %>% arrange(desc(n_reviews))
head(users_rated_n_times, 20)
tail(users_rated_n_times, 20)
rb <- book_rated_n_times %>% ggplot(aes(x = n_reviews)) +
geom_histogram(bins = 500) +
labs(x = "# of Reviews",
subtitle = "... book review numbers") +
theme_bw()
urn <- users_rated_n_times %>% ggplot(aes(x = n_reviews)) +
geom_histogram(bins = 500) +
labs(x = "# of Reviews",
subtitle = "... user review numbers") +
theme_bw()
library(patchwork)
(rb + urn) + plot_annotation(title = "Distribution of ...")
## limit to books rated > 10 times
book_rated_n_times <- book_rated_n_times %>% filter(n_reviews >= 10)
## limit to users rated > 20 books
users_rated_n_times <- users_rated_n_times %>% filter(n_reviews >= 20)
## apply the filter
### rating with books rated > 10 times & users rated > 20 times
ratings <- ratings %>% filter(
isbn %in% book_rated_n_times$isbn &
user_id %in% users_rated_n_times$user_id)
table(ratings$book_rating)
## remove books with 0 ratings
ratings <- ratings %>% filter(book_rating > 0)
n_distinct(ratings$isbn) # 6340
n_distinct(ratings$user_id) # 2774
## take a random sample
set.seed(2022)
ratings <- ratings %>% sample_frac(.5, replace = FALSE)
n_distinct(ratings$isbn) # 5554
n_distinct(ratings$user_id) # 2531
books <- books %>% filter(isbn %in% ratings$isbn)
users <- users %>% filter(user_id %in% ratings$user_id)
us_rat_mat <- ratings %>%
pivot_wider(names_from = isbn, values_from = book_rating) %>%
column_to_rownames(var = "user_id")
us_rat_mat <- data.matrix(us_rat_mat)
library(recommenderlab)
BookRatingsMatrix <- as(us_rat_mat, "realRatingMatrix")
gdata::keep(BookRatingsMatrix, books, users, ratings, sure = TRUE)
pacman::p_loaded()
pacman::p_unload(all)
save.image(file = "data/BookRatings.RData")