-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
660 lines (553 loc) · 23.6 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
"""Take log files from the results directory and create bar charts using Plotly.
Author: Bernhard Enders
Date: 2024-02-17
Modified by: bgeneto
Date: 2024-02-19
"""
import json
import os
import re
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
class LogParser:
def __init__(self, filename):
self.filename = filename
def parse_logfile(self):
"""
Parses a log file and retrieves the requests per second value.
"""
with open(self.filename, "r") as f:
c = 0
for line in f:
c += 1
# check if is the first line of the log file
if c == 1:
command_args = line.strip()
if "finished in" in line:
# Extract requests per second value
req_per_sec = float(line.split(", ")[1].split("req/s")[0])
return req_per_sec, command_args
raise ValueError(f"Could not find relevant data in log file: {self.filename}")
class FilenameExtractor:
def __init__(self, filename):
self.filename = filename
def extract_info_from_filename(self):
# Split the filename by '.'
parts = self.filename.split(".")
# The framework name is the first part
framework_name = parts[0].split("/")[-1].capitalize()
# The benchmark name is the second part
benchmark_name = parts[2].capitalize()
return framework_name, benchmark_name
class FileCounter:
def __init__(self, directory, skip_dirs=None):
self.directory = directory
self.skip_dirs = skip_dirs
def count_files(self):
"""
Counts the number of all files in a directory recursively.
Returns a dictionary with the root folder name (first level) as the key and the count as the value.
"""
if self.skip_dirs is None:
self.skip_dirs = []
count_dict = {}
for root, dirs, files in os.walk(self.directory):
# Skip directories in skip_dirs list
dirs[:] = [d for d in dirs if d not in self.skip_dirs]
if root == self.directory:
for dir in dirs:
count_dict[dir] = 0
else:
first_level_dir = root.split(self.directory)[-1].split(os.sep)[1]
count_dict[first_level_dir] += len(files)
return count_dict
class PercentageCalculator:
def __init__(self, values):
self.values = values
def calculate_percentages(self):
max_value = max(self.values)
percentages = [(value / max_value) * 100 for value in self.values]
return percentages
class FilePlotter:
def __init__(self, total_files):
self.total_files = total_files
def plot_total_number_of_files(self):
"""
Plots the total number of files in each directory.
Order by the number of files in descending order.
"""
total_files = dict(
sorted(self.total_files.items(), key=lambda item: item[1], reverse=True)
)
if len(total_files) == 0:
print("No framework files found.")
return
# Calculate the percentages
max_value = max(total_files.values())
percentages = [
f"{value} | {(value / max_value) * 100:.1f}%"
for value in total_files.values()
]
fig = go.Figure()
for x_value, y_value, percentage in zip(
list(total_files.keys()), list(total_files.values()), percentages
):
fig.add_trace(
go.Bar(
x=[x_value],
y=[y_value],
text=[percentage],
textposition="auto",
name=x_value, # Set the legend text to the x-value
)
)
fig.update_layout(
title_text="framework size comparison (excluding folders: cache, logs, storage, var, writable...)",
title_font=dict(size=20),
xaxis_title="Framework",
yaxis_title="Total Number of Files",
)
# Export to a single HTML file
export_file = output_dir + "framework-size-chart.html"
fig.write_html(export_file)
print(f"Framework size bar charts exported to {export_file}")
class H2LoadPlotter:
def __init__(self, results_dir):
self.results_dir = results_dir
def plot_h2load(self):
"""
Creates a bar chart of requests per second for all log files in the specified directory.
"""
filenames = [
os.path.join(self.results_dir, f)
for f in os.listdir(self.results_dir)
if f.endswith(".h2load.log")
]
frameworks = []
benchmark_names = []
for filename in filenames:
extractor = FilenameExtractor(filename)
framework_name, benchmark_name = extractor.extract_info_from_filename()
frameworks.append(framework_name)
benchmark_names.append(benchmark_name)
req_per_sec_values = []
for i, filename in enumerate(filenames):
try:
parser = LogParser(filename)
rps, command_args = parser.parse_logfile()
except ValueError as e:
print(f"Error: {e}")
continue
req_per_sec_values.append(rps)
# Initialize dictionaries to hold requests per second values and labels for each benchmark type
req_per_sec_by_bench = {bench: [] for bench in benchmark_names}
labels_by_bench = {bench: [] for bench in benchmark_names}
# Populate the dictionaries
for i, bench_type in enumerate(benchmark_names):
label = frameworks[i]
req_per_sec = req_per_sec_values[i]
if bench_type in req_per_sec_by_bench:
req_per_sec_by_bench[bench_type].append(req_per_sec)
labels_by_bench[bench_type].append(label)
# Sort the data by requests per second in descending order
for bench_type in benchmark_names:
if bench_type in req_per_sec_by_bench:
sorted_pairs = sorted(
zip(req_per_sec_by_bench[bench_type], labels_by_bench[bench_type]),
reverse=True,
)
req_per_sec_by_bench[bench_type], labels_by_bench[bench_type] = (
zip(*sorted_pairs) if sorted_pairs else ([], [])
)
# Remove duplicates from the benchmark names list
benchmark_names = list(set(benchmark_names))
# Create subplots dynamically based on the number of benchmarks
cols = len(benchmark_names)
if cols == 0:
print("No h2load log files found.")
return
fig = make_subplots(
rows=1,
cols=cols,
subplot_titles=[f"Benchmark: {bench}" for bench in benchmark_names],
)
# Add traces for each benchmark
for i, benchmark_type in enumerate(benchmark_names, start=1):
if (
benchmark_type in req_per_sec_by_bench
and req_per_sec_by_bench[benchmark_type]
):
percentages = PercentageCalculator(
req_per_sec_by_bench[benchmark_type]
).calculate_percentages()
text_values = [
f"{y_value} | {percentage:.1f}%"
for y_value, percentage in zip(
req_per_sec_by_bench[benchmark_type], percentages
)
]
for label, y_value, text_value in zip(
labels_by_bench[benchmark_type],
req_per_sec_by_bench[benchmark_type],
text_values,
):
fig.add_trace(
go.Bar(
x=[label],
y=[y_value],
name=label, # Set the legend text to the label
text=[text_value],
textposition="auto",
),
row=1,
col=i,
)
# Update layout to adjust titles and axis labels
fig.update_layout(
title_text=f"h2load requests per second charts<br>(h2load {command_args})",
title_font=dict(size=20),
xaxis_title="Framework",
yaxis_title="Requests per Second (RPS)",
)
# Export to a single HTML file
export_file = output_dir + "h2load-charts.html"
fig.write_html(export_file)
print(f"h2load bar charts exported to {export_file}")
class Wrk2Plotter:
def __init__(self, results_dir):
self.results_dir = results_dir
def plot_wrk2(self):
# Prepare an empty DataFrame to store all latency data
latency_data = pd.DataFrame()
command_args = ""
# Loop through each file in the logs directory
for filename in os.listdir(self.results_dir):
if filename.endswith(".wrk2.log"):
extractor = FilenameExtractor(filename)
framework_name, benchmark_name = extractor.extract_info_from_filename()
# Construct the full file path
file_path = os.path.join(self.results_dir, filename)
# Initialize lists to store the extracted data
percentiles = []
latencies = []
# Open and read the file
with open(file_path, "r") as f:
lines = f.readlines()
c = 0
for line in lines:
c += 1
if c == 1:
command_args = line.strip()
if line.strip() and "Value" not in line and "inf" not in line:
# Extract latency and percentile values
parts = line.split()
if len(parts) >= 2:
try:
latency = float(parts[0])
percentile = float(parts[1])
percentiles.append(percentile)
latencies.append(latency)
except ValueError:
# Handle the case where conversion to float fails
continue
# Create a DataFrame from the extracted data
df = pd.DataFrame(
{
"Percentile": percentiles,
"Latency": latencies,
"File": filename.replace(
".latency.log", ""
), # Use file name as identifier
}
)
# Remove the last 20 percentiles to avoid skewing the chart
df = df[df["Percentile"] <= 0.992]
# Append the data to the main DataFrame
latency_data = pd.concat([latency_data, df], ignore_index=True)
if len(latency_data) == 0:
print("No wrk2 log files found.")
return
# Add two new columns to the DataFrame for bench_name and framework_name
latency_data["BenchName"] = latency_data["File"].apply(
lambda x: x.split(".")[2].capitalize()
)
latency_data["FrameworkName"] = latency_data["File"].apply(
lambda x: x.split(".")[0]
)
# Group the DataFrame by bench_name
grouped = latency_data.groupby("BenchName")
# Loop through each group and create a plot
for benchmark_name, group in grouped:
fig = px.line(
group,
x="Percentile",
y="Latency",
color="FrameworkName", # Use framework_name as legend
markers=True,
labels={"Latency": "Latency (ms)", "Percentile": "Percentile"},
title=f"wrk2 latency by percentile | Benchmark: {benchmark_name}<br>(wrk2 {command_args})",
)
fig.update_layout(title={"font": dict(size=20)})
# Export the plot to a separate HTML file for each bench_name
export_file = output_dir + f"wrk2-{benchmark_name}-charts.html"
fig.write_html(export_file)
print(f"wrk2 charts for {benchmark_name} exported to {export_file}")
class WrkPlotter:
def __init__(self, results_dir):
self.results_dir = results_dir
def convert_to_number(self, value):
if "k" in value:
return float(value.replace("k", "")) * 1000
else:
return float(value)
def plot_wrk(self):
# Regular expression patterns to extract data
latency_pattern = re.compile(r"Latency\s+(\d+\.\d+m?s)")
req_sec_pattern = re.compile(r"Req/Sec\s+(\d+\.\d+k?)?")
# Data structure to hold the parsed results
results = {}
# Iterate over each file in the results directory
for filename in os.listdir(self.results_dir):
if filename.endswith(".wrk.log"):
extractor = FilenameExtractor(filename)
framework_name, benchmark_name = extractor.extract_info_from_filename()
with open(
os.path.join(self.results_dir, filename), "r", encoding="utf-8"
) as file:
content = file.read()
# The first line of the file contains the wrk command used
command_args = content.split("\n")[0]
# Extract the average latency and requests per second
avg_latency = latency_pattern.search(content).group(1)
avg_req_sec = req_sec_pattern.search(content).group(1)
# Convert avg_req_sec to requests/sec if the value ends with 'k'
if "k" in str(avg_req_sec):
avg_req_sec = float(avg_req_sec.replace("k", "")) * 1000
else:
avg_req_sec = float(avg_req_sec)
if "ms" in str(avg_latency):
avg_latency = float(avg_latency.replace("ms", ""))
else:
avg_latency = float(avg_latency.replace("s", "")) * 1000
if benchmark_name not in results:
results[benchmark_name] = {
"frameworks": [],
"latencies": [],
"req_secs": [],
}
results[benchmark_name]["frameworks"].append(framework_name)
results[benchmark_name]["latencies"].append(avg_latency)
results[benchmark_name]["req_secs"].append(avg_req_sec)
if len(results) == 0:
print("No wrk log files found.")
return
# Create subplots
fig = make_subplots(
rows=2,
cols=len(results),
subplot_titles=[
f"Benchmark: {bench_name}" for bench_name in results.keys()
],
)
# order latencies in ascending and req_secs descending order
for benchmark_name, data in results.items():
# Create a temporary DataFrame for sorting within each benchmark
df = pd.DataFrame(data)
# Sort by 'latencies' (ascending), then 'req_secs' (descending)
df = df.sort_values(by=['latencies', 'req_secs'], ascending=[True, False])
# Update results dictionary with sorted data
results[benchmark_name] = {
'frameworks': df['frameworks'].to_list(),
'latencies': df['latencies'].to_list(),
'req_secs': df['req_secs'].to_list()
}
col = 1
for benchmark_name, data in results.items():
# Add the latency bar chart
for framework, latency in zip(data["frameworks"], data["latencies"]):
fig.add_trace(
go.Bar(
x=[framework],
y=[latency],
name=framework,
text=f"{latency:.1f}",
),
row=1,
col=col,
)
# Add the requests per second bar chart
for framework, req_sec in zip(data["frameworks"], data["req_secs"]):
fig.add_trace(
go.Bar(
x=[framework],
y=[req_sec],
name=framework,
text=f"{req_sec:.1f}",
),
row=2,
col=col,
)
# Add x and y axis titles
fig.update_xaxes(title_text="Framework", row=1, col=col)
fig.update_yaxes(
title_text="Avg Latency (ms), lower is better", row=1, col=col
)
fig.update_xaxes(title_text="Framework", row=2, col=col)
fig.update_yaxes(title_text="Avg Req/Sec", row=2, col=col)
col += 1
# Update layout
fig.update_layout(
height=400 * len(results),
title_text=f"Benchmark Results<br>(wrk {command_args}) ",
barmode="group",
)
# Export to HTML
export_file = output_dir + f"wrk-charts.html"
fig.write_html(export_file)
print(f"wrk charts exported to {export_file}")
class K6DataExtractor:
def __init__(self, framework_name, benchmark_name):
self.framework_name = framework_name
self.benchmark_name = benchmark_name
def extract_k6_data(self):
"""Extracts avg and rate data from a log file"""
# convert framework_name and benchmark_name to lowercase
framework_name = self.framework_name.lower()
benchmark_name = self.benchmark_name.lower()
file_path = os.path.join(
output_dir, f"{framework_name}.bench.{benchmark_name}.k6.log"
)
with open(file_path, "r") as f:
log_data = json.load(f)
try:
avg_duration = log_data["metrics"][
"http_req_duration{expected_response:true}"
]["avg"]
req_rate = log_data["metrics"]["http_reqs"]["rate"]
checks_perc_value = log_data["metrics"]["checks"]["value"]
vus_max = log_data["metrics"]["vus_max"]["value"]
except KeyError:
print(f"Error: Could not find relevant data in log file: {file_path}")
return None, None
return avg_duration, req_rate, checks_perc_value, vus_max
class K6DataGatherer:
def __init__(self, results_dir):
self.results_dir = results_dir
def gather_k6_data(self):
"""Gathers data from all log files"""
data = {}
for filename in os.listdir(self.results_dir):
if filename.endswith(".k6.log"):
extractor = FilenameExtractor(filename)
framework_name, benchmark_name = extractor.extract_info_from_filename()
if benchmark_name not in data:
data[benchmark_name] = {
"frameworks": [],
"avg_durations": [],
"req_rates": [],
"checks_perc_value": [],
"vus_max": [],
}
avg_duration, req_rate, checks_perc_value, vus_max = K6DataExtractor(
framework_name, benchmark_name
).extract_k6_data()
if avg_duration is None or req_rate is None:
continue
data[benchmark_name]["frameworks"].append(framework_name)
data[benchmark_name]["avg_durations"].append(avg_duration)
data[benchmark_name]["req_rates"].append(req_rate)
data[benchmark_name]["checks_perc_value"].append(checks_perc_value)
data[benchmark_name]["vus_max"].append(vus_max)
return data
class K6Plotter:
def __init__(self, results_dir):
self.results_dir = results_dir
def plot_k6(self):
"""Creates bar charts using Plotly"""
data = K6DataGatherer(self.results_dir).gather_k6_data()
if data is None:
print("No k6 log files found.")
return
metrics = ["Avg Duration (ms)", "Req Rate (req/s)"]
num_test_names = len(data)
if num_test_names == 0:
print("No k6 log files found.")
return
fig = make_subplots(
rows=2,
cols=num_test_names,
subplot_titles=list(f"Benchmark: {x}" for x in data.keys()),
)
for i, test_name in enumerate(data):
test_data = data[test_name]
for j, metric in enumerate(metrics):
y_data = (
sorted(
zip(
test_data["avg_durations"],
test_data["frameworks"],
test_data["checks_perc_value"],
)
)
if metric == "Avg Duration (ms)"
else sorted(
zip(
test_data["req_rates"],
test_data["frameworks"],
test_data["checks_perc_value"],
),
reverse=True,
)
)
for value, framework, perc_value in y_data:
fig.add_trace(
go.Bar(
x=[framework],
y=[value],
name=framework,
text=f"{value:.1f} | OK: {100*perc_value:.1f}%",
textposition="auto",
),
row=j + 1,
col=i + 1,
)
# Add y-axis titles
fig.update_yaxes(
title_text="Avg. Duration / Latency (ms)", row=1, col=i + 1
)
fig.update_yaxes(title_text="Req. Rates (req/s)", row=2, col=i + 1)
# Customize layout (optional)
fig.update_layout(
height=1080,
title_text="k6 benchmark results (ramping-vus max. = "
+ str(data[test_name]["vus_max"][0])
+ ")", # supposing that all tests have the same vus
)
# Export to a single HTML file
export_file = output_dir + "k6-charts.html"
fig.write_html(export_file)
print(f"k6 bar charts exported to {export_file}")
if __name__ == "__main__":
# Dockerfile.python work directory
work_dir = "/usr/src/app"
# Directory containing the log files
output_dir = work_dir + "/results/"
# Check if the output directory exists
if not os.path.exists(output_dir):
print(f"Error: Output directory {output_dir} not found.")
exit(1)
# Exclude the following directories from the count
counter = FileCounter(work_dir + "/www/html", ["storage", "var", "logs", "cache", "writable"])
total_files = counter.count_files()
plotter = FilePlotter(total_files)
plotter.plot_total_number_of_files()
h2load_plotter = H2LoadPlotter(output_dir)
h2load_plotter.plot_h2load()
wrk_plotter = WrkPlotter(output_dir)
wrk_plotter.plot_wrk()
wrk2_plotter = Wrk2Plotter(output_dir)
wrk2_plotter.plot_wrk2()
k6_plotter = K6Plotter(output_dir)
k6_plotter.plot_k6()