-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_entailment.py
executable file
·276 lines (251 loc) · 9.06 KB
/
evaluate_entailment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/env python
import numpy as np
import pandas as pd
import click as ck
from sklearn.metrics import classification_report
from sklearn.metrics.pairwise import cosine_similarity
import sys
from collections import deque
import time
import logging
from sklearn.metrics import roc_curve, auc, matthews_corrcoef
from scipy.spatial import distance
from scipy import sparse
import math
from utils import FUNC_DICT, Ontology, NAMESPACES
from matplotlib import pyplot as plt
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
@ck.command()
@ck.option(
'--data-root', '-dr', default='data',
help='Prediction model')
@ck.option(
'--model-name', '-m', default='deepgo_esm',
help='Prediction model')
@ck.option(
'--ont', '-ont', default='mf',
help='Sub ontology')
@ck.option(
'--combine', '-c', default='avg',
help='Combination strategy for entailment')
@ck.option(
'--n-models', '-nm', default=6,
help='Top N models for semantic entailment')
def main(data_root, model_name, ont, combine, n_models):
train_data_file = f'{data_root}/{ont}/train_data.pkl'
valid_data_file = f'{data_root}/{ont}/valid_data.pkl'
test_data_file = f'{data_root}/{ont}/predictions_{model_name}_0.pkl'
terms_file = f'{data_root}/{ont}/terms.pkl'
go_rels = Ontology(f'{data_root}/go-basic.obo', with_rels=True)
terms_df = pd.read_pickle(terms_file)
terms = terms_df['gos'].values.flatten()
terms_dict = {v: i for i, v in enumerate(terms)}
train_df = pd.read_pickle(train_data_file)
valid_df = pd.read_pickle(valid_data_file)
train_df = pd.concat([train_df, valid_df])
test_df = pd.read_pickle(test_data_file)
annotations = train_df['prop_annotations'].values
annotations = list(map(lambda x: set(x), annotations))
test_annotations = test_df['prop_annotations'].values
test_annotations = list(map(lambda x: set(x), test_annotations))
go_rels.calculate_ic(annotations + test_annotations)
# Print IC values of terms
ics = {}
for term in terms:
ics[term] = go_rels.get_ic(term)
# Obtain predictions from falcon models
eval_preds = []
top_models = get_top_models(ont, model_name, n_models)
for i in top_models: #range(6):#[0, 5, 6, 8]:
#if i not in top_models:
# continue
test_df = pd.read_pickle(f'{data_root}/{ont}/predictions_{model_name}_{i}.pkl')
for j, row in enumerate(test_df.itertuples()):
if j == len(eval_preds):
eval_preds.append(row.preds)
else:
if combine == 'max':
eval_preds[j] = np.maximum(eval_preds[j], row.preds)
elif combine == 'min':
eval_preds[j] = np.minimum(eval_preds[j], row.preds)
elif combine == 'avg':
eval_preds[j] = eval_preds[j] + row.preds
else:
raise NotImplementedError()
labels = np.zeros((len(test_df), len(terms)), dtype=np.float32)
eval_preds = np.stack(eval_preds).reshape(-1, len(terms))
if combine == 'avg':
eval_preds /= len(top_models) # taking mean
for i, row in enumerate(test_df.itertuples()):
for go_id in row.prop_annotations:
if go_id in terms_dict:
labels[i, terms_dict[go_id]] = 1
# with open(f'data/{ont}/preds.tsv', 'w') as f:
# for i, row in enumerate(test_df.itertuples()):
# for j, go_id in enumerate(terms):
# if eval_preds[i][j] >= 0.1:
# f.write(
# f'{row.accessions}\t{row.proteins}\t{go_id}\t{eval_preds[i][j]}\n')
# return
total_n = 0
total_sum = 0
for go_id, i in terms_dict.items():
pos_n = np.sum(labels[:, i])
if pos_n > 0 and pos_n < len(test_df):
total_n += 1
roc_auc = compute_roc(labels[:, i], eval_preds[:, i])
total_sum += roc_auc
print(f'Average AUC for {ont} {total_sum / total_n:.3f}')
# return
print('Computing Fmax')
fmax = 0.0
tmax = 0.0
wfmax = 0.0
wtmax = 0.0
avgic = 0.0
precisions = []
recalls = []
smin = 1000000.0
rus = []
mis = []
ont2 = 'mf'
go_set = go_rels.get_namespace_terms(NAMESPACES[ont])
go_set.remove(FUNC_DICT[ont])
labels = test_df['prop_annotations'].values
labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), labels))
spec_labels = test_df['exp_annotations'].values
spec_labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), spec_labels))
fmax_spec_match = 0
for t in range(0, 101):
threshold = t / 100.0
preds = [set() for _ in range(len(test_df))]
for i in range(len(test_df)):
annots = set()
above_threshold = np.argwhere(eval_preds[i] >= threshold).flatten()
for j in above_threshold:
annots.add(terms[j])
if t == 0:
preds[i] = annots
continue
# new_annots = set()
# for go_id in annots:
# new_annots |= go_rels.get_ancestors(go_id)
preds[i] = annots
# Filter classes
preds = list(map(lambda x: set(filter(lambda y: y in go_set, x)), preds))
fscore, prec, rec, s, ru, mi, fps, fns, avg_ic, wf = evaluate_annotations(go_rels, labels, preds)
spec_match = 0
for i, row in enumerate(test_df.itertuples()):
# if len(spec_labels[i].intersection(preds[i])) > 0:
# print(row.accessions)
spec_match += len(spec_labels[i].intersection(preds[i]))
# print(f'AVG IC {avg_ic:.3f}')
precisions.append(prec)
recalls.append(rec)
# print(f'Fscore: {fscore}, Precision: {prec}, Recall: {rec} S: {s}, RU: {ru}, MI: {mi} threshold: {threshold}, WFmax: {wf}')
if fmax < fscore:
fmax = fscore
tmax = threshold
avgic = avg_ic
fmax_spec_match = spec_match
if wfmax < wf:
wfmax = wf
wtmax = threshold
if smin > s:
smin = s
print(ont)
print(f'Fmax: {fmax:0.3f}, Smin: {smin:0.3f}, threshold: {tmax}, spec: {fmax_spec_match}')
print(f'WFmax: {wfmax:0.3f}, threshold: {wtmax}')
precisions = np.array(precisions)
recalls = np.array(recalls)
sorted_index = np.argsort(recalls)
recalls = recalls[sorted_index]
precisions = precisions[sorted_index]
aupr = np.trapz(precisions, recalls)
print(f'AUPR: {aupr:0.3f}')
print(f'AVGIC: {avgic:0.3f}')
def compute_roc(labels, preds):
# Compute ROC curve and ROC area for each class
fpr, tpr, _ = roc_curve(labels.flatten(), preds.flatten())
roc_auc = auc(fpr, tpr)
return roc_auc
def compute_mcc(labels, preds):
# Compute ROC curve and ROC area for each class
mcc = matthews_corrcoef(labels.flatten(), preds.flatten())
return mcc
def evaluate_annotations(go, real_annots, pred_annots):
total = 0
p = 0.0
r = 0.0
wp = 0.0
wr = 0.0
p_total= 0
ru = 0.0
mi = 0.0
avg_ic = 0.0
fps = []
fns = []
for i in range(len(real_annots)):
if len(real_annots[i]) == 0:
continue
tp = set(real_annots[i]).intersection(set(pred_annots[i]))
fp = pred_annots[i] - tp
fn = real_annots[i] - tp
tpic = 0.0
for go_id in tp:
tpic += go.get_norm_ic(go_id)
avg_ic += go.get_ic(go_id)
fpic = 0.0
for go_id in fp:
fpic += go.get_norm_ic(go_id)
mi += go.get_ic(go_id)
fnic = 0.0
for go_id in fn:
fnic += go.get_norm_ic(go_id)
ru += go.get_ic(go_id)
fps.append(fp)
fns.append(fn)
tpn = len(tp)
fpn = len(fp)
fnn = len(fn)
total += 1
recall = tpn / (1.0 * (tpn + fnn))
r += recall
wrecall = tpic / (tpic + fnic)
wr += wrecall
if len(pred_annots[i]) > 0:
p_total += 1
precision = tpn / (1.0 * (tpn + fpn))
p += precision
wp += tpic / (tpic + fpic)
avg_ic = (avg_ic + mi) / total
ru /= total
mi /= total
r /= total
wr /= total
if p_total > 0:
p /= p_total
wp /= p_total
f = 0.0
wf = 0.0
if p + r > 0:
f = 2 * p * r / (p + r)
wf = 2 * wp * wr / (wp + wr)
s = math.sqrt(ru * ru + mi * mi)
return f, p, r, s, ru, mi, fps, fns, avg_ic, wf
def get_top_models(ont, model, n_models):
return [0,3,]
valid_losses = []
for ind in range(10):
with open(f'data/{ont}/valid_{model}_{ind}.pf') as f:
lines = f.readlines()
it = lines[-1].strip().split(', ')[0].split(' - ')
loss = float(it[-1])
valid_losses.append((ind, loss))
valid_losses = sorted(valid_losses, key=lambda x: x[1])
valid_losses = valid_losses[:n_models]
result = [m_id for m_id, loss in valid_losses]
print(valid_losses)
return set(result)
if __name__ == '__main__':
main()