-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path05_ops_validation.py
255 lines (188 loc) · 8.34 KB
/
05_ops_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Databricks notebook source
# MAGIC %md
# MAGIC ## Model Tests
# MAGIC
# MAGIC <img src="https://github.com/RafiKurlansik/laughing-garbanzo/blob/main/step5.png?raw=true">
# COMMAND ----------
# MAGIC %md
# MAGIC ### Fetch Model in Transition
# COMMAND ----------
# MAGIC %run ./00_includes
# COMMAND ----------
import mlflow, json
from mlflow.tracking import MlflowClient
from databricks.feature_store import FeatureStoreClient
client = MlflowClient()
fs = FeatureStoreClient()
# After receiving payload from webhooks, use MLflow client to retrieve model details and lineage
try:
registry_event = json.loads(dbutils.widgets.get('event_message'))
model_name = registry_event['model_name']
version = registry_event['version']
if 'to_stage' in registry_event and registry_event['to_stage'] != 'Staging':
dbutils.notebook.exit()
except Exception:
model_name = f'{database_namme}_churn'
version = "1"
print(model_name, version)
# Use webhook payload to load model details and run info
model_details = client.get_model_version(model_name, version)
run_info = client.get_run(run_id=model_details.run_id)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC #### Validate prediction
# COMMAND ----------
# Read from feature store prod table?
data_source = run_info.data.tags['db_table']
features = fs.read_table(data_source)
# Load model as a Spark UDF
model_uri = f'models:/{model_name}/{version}'
loaded_model = mlflow.pyfunc.spark_udf(spark, model_uri=model_uri)
# Predict on a Spark DataFrame
try:
display(features.withColumn('predictions', loaded_model(*features.columns)))
client.set_model_version_tag(name=model_name, version=version, key="predicts", value=1)
except Exception:
print("Unable to predict on features.")
client.set_model_version_tag(name=model_name, version=version, key="predicts", value=0)
pass
# COMMAND ----------
# MAGIC %md
# MAGIC #### Signature check
# MAGIC
# MAGIC When working with ML models you often need to know some basic functional properties of the model at hand, such as “What inputs does it expect?” and “What output does it produce?”. The model **signature** defines the schema of a model’s inputs and outputs. Model inputs and outputs can be either column-based or tensor-based.
# MAGIC
# MAGIC See [here](https://mlflow.org/docs/latest/models.html#signature-enforcement) for more details.
# COMMAND ----------
if not loaded_model.metadata.signature:
print("This model version is missing a signature. Please push a new version with a signature! See https://mlflow.org/docs/latest/models.html#model-metadata for more details.")
client.set_model_version_tag(name=model_name, version=version, key="has_signature", value=0)
else:
client.set_model_version_tag(name=model_name, version=version, key="has_signature", value=1)
# COMMAND ----------
# MAGIC %md
# MAGIC
# MAGIC #### Demographic accuracy
# MAGIC
# MAGIC How does the model perform across various slices of the customer base?
# COMMAND ----------
import numpy as np
features = features.withColumn('predictions', loaded_model(*features.columns)).toPandas()
features['accurate'] = np.where(features.churn == features.predictions, 1, 0)
# Check run tags for demographic columns and accuracy in each segment
try:
demographics = run_info.data.tags['demographic_vars'].split(",")
slices = features.groupby(demographics).accurate.agg(acc = 'sum', obs = lambda x:len(x), pct_acc = lambda x:sum(x)/len(x))
# Threshold for passing on demographics is 55%
demo_test = "pass" if slices['pct_acc'].any() > 0.55 else "fail"
# Set tags in registry
client.set_model_version_tag(name=model_name, version=version, key="demo_test", value=demo_test)
print(slices)
except KeyError:
print("KeyError: No demographics_vars tagged with this model version.")
client.set_model_version_tag(name=model_name, version=version, key="demo_test", value="none")
pass
# COMMAND ----------
# MAGIC %md
# MAGIC ## Documentation
# MAGIC Is the model documented visually and in plain english?
# COMMAND ----------
# MAGIC %md
# MAGIC #### Description check
# MAGIC
# MAGIC Has the data scientist provided a description of the model being submitted?
# COMMAND ----------
# If there's no description or an insufficient number of charaters, tag accordingly
if not model_details.description:
client.set_model_version_tag(name=model_name, version=version, key="has_description", value=0)
print("Did you forget to add a description?")
elif not len(model_details.description) > 20:
client.set_model_version_tag(name=model_name, version=version, key="has_description", value=0)
print("Your description is too basic, sorry. Please resubmit with more detail (40 char min).")
else:
client.set_model_version_tag(name=model_name, version=version, key="has_description", value=1)
# COMMAND ----------
# MAGIC %md
# MAGIC #### Artifact check
# MAGIC Has the data scientist logged supplemental artifacts along with the original model?
# COMMAND ----------
import os
# Create local directory
local_dir = "/tmp/model_artifacts"
if not os.path.exists(local_dir):
os.mkdir(local_dir)
# Download artifacts from tracking server - no need to specify DBFS path here
local_path = client.download_artifacts(run_info.info.run_id, "", local_dir)
# Tag model version as possessing artifacts or not
if not os.listdir(local_path):
client.set_model_version_tag(name=model_name, version=version, key="has_artifacts", value=0)
print("There are no artifacts associated with this model. Please include some data visualization or data profiling. MLflow supports HTML, .png, and more.")
else:
client.set_model_version_tag(name=model_name, version=version, key = "has_artifacts", value = 1)
print("Artifacts downloaded in: {}".format(local_path))
print("Artifacts: {}".format(os.listdir(local_path)))
# COMMAND ----------
# MAGIC %md
# MAGIC ## Results
# MAGIC
# MAGIC Here's a summary of the testing results:
# COMMAND ----------
results = client.get_model_version(model_name, version)
results.tags
# COMMAND ----------
# MAGIC %md
# MAGIC Notify the Slack channel with the same webhook used to alert on transition change in MLflow.
# COMMAND ----------
import requests, json
slack_message = "Registered model '{}' version {} baseline test results: {}".format(model_name, version, results.tags)
webhook_url = slack_webhook
body = {'text': slack_message}
response = requests.post(
webhook_url, data=json.dumps(body),
headers={'Content-Type': 'application/json'}
)
if response.status_code != 200:
raise ValueError(
'Request to slack returned an error %s, the response is:\n%s'
% (response.status_code, response.text)
)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Move to Staging or Archived
# MAGIC
# MAGIC The next phase of this models' lifecycle will be to `Staging` or `Archived`, depending on how it fared in testing.
# COMMAND ----------
# Helper functions
import mlflow
from mlflow.utils.rest_utils import http_request
import json
def client():
return mlflow.tracking.client.MlflowClient()
host_creds = client()._tracking_client.store.get_host_creds()
host = host_creds.host
token = host_creds.token
def mlflow_call_endpoint(endpoint, method, body='{}'):
if method == 'GET':
response = http_request(
host_creds=host_creds, endpoint="/api/2.0/mlflow/{}".format(endpoint), method=method, params=json.loads(body))
else:
response = http_request(
host_creds=host_creds, endpoint="/api/2.0/mlflow/{}".format(endpoint), method=method, json=json.loads(body))
return response.json()
# COMMAND ----------
# If any checks failed, reject and move to Archived
if '0' in results or 'fail' in results:
reject_request_body = {'name': model_details.name,
'version': model_details.version,
'stage': 'Staging',
'comment': 'Tests failed - check the tags or the job run to see what happened.'}
mlflow_call_endpoint('transition-requests/reject', 'POST', json.dumps(reject_request_body))
else:
approve_request_body = {'name': model_details.name,
'version': model_details.version,
'stage': 'Staging',
'archive_existing_versions': 'true',
'comment': 'All tests passed! Moving to staging.'}
mlflow_call_endpoint('transition-requests/approve', 'POST', json.dumps(approve_request_body))
# COMMAND ----------