forked from wangjohn/quickselect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickselect.go
344 lines (291 loc) · 9.54 KB
/
quickselect.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/*
The quickselect package provides primitives for finding the smallest k elements
in slices and user-defined collections. The primitives used in the package are
modeled off of the standard sort library for Go. Quickselect uses Hoare's
Selection Algorithm which finds the smallest k elements in expected O(n) time,
and is thus an asymptotically optimal algorithm (and is faster than sorting or
heap implementations).
*/
package quickselect
import (
"container/heap"
"errors"
"fmt"
"math/rand"
)
const (
partitionThreshold = 8
naiveSelectionLengthThreshold = 100
naiveSelectionThreshold = 10
heapSelectionKRatio = 0.001
heapSelectionThreshold = 1e3
)
/*
A type, typically a collection, which satisfies quickselect.Interface can be
used as data in the QuickSelect method. The interface is the same as the
interface required by Go's canonical sorting package (sort.Interface).
Note that the methods require that the elements of the collection be enumerated
by an integer index.
*/
type Interface interface {
// Len is the number of elements in the collection
Len() int
// Less reports whether the element with
// index i should sort before the element with index j
Less(i, j int) bool
// Swap swaps the order of elements i and j
Swap(i, j int)
}
type reverse struct {
// This embedded Interface permits Reverse to use the methods of
// another Interface implementation.
Interface
}
// Less returns the opposite of the embedded implementation's Less method.
func (r reverse) Less(i, j int) bool {
return r.Interface.Less(j, i)
}
func Reverse(data Interface) Interface {
return &reverse{data}
}
// The IntSlice type attaches the QuickSelect interface to an array of ints. It
// implements Interface so that you can call QuickSelect(k) on any IntSlice.
type IntSlice []int
func (t IntSlice) Len() int {
return len(t)
}
func (t IntSlice) Less(i, j int) bool {
return t[i] < t[j]
}
func (t IntSlice) Swap(i, j int) {
t[i], t[j] = t[j], t[i]
}
// QuickSelect(k) mutates the IntSlice so that the first k elements in the
// IntSlice are the k smallest elements in the slice. This is a convenience
// method for QuickSelect
func (t IntSlice) QuickSelect(k int) error {
return QuickSelect(t, k)
}
// The Float64Slice type attaches the QuickSelect interface to an array of
// float64s. It implements Interface so that you can call QuickSelect(k) on any
// Float64Slice.
type Float64Slice []float64
func (t Float64Slice) Len() int {
return len(t)
}
func (t Float64Slice) Less(i, j int) bool {
return t[i] < t[j] || isNaN(t[i]) && !isNaN(t[j])
}
func (t Float64Slice) Swap(i, j int) {
t[i], t[j] = t[j], t[i]
}
// QuickSelect(k) mutates the Float64Slice so that the first k elements in the
// Float64Slice are the k smallest elements in the slice. This is a convenience
// method for QuickSelect
func (t Float64Slice) QuickSelect(k int) error {
return QuickSelect(t, k)
}
// The StringSlice type attaches the QuickSelect interface to an array of
// float64s. It implements Interface so that you can call QuickSelect(k) on any
// StringSlice.
type StringSlice []string
func (t StringSlice) Len() int {
return len(t)
}
func (t StringSlice) Less(i, j int) bool {
return t[i] < t[j]
}
func (t StringSlice) Swap(i, j int) {
t[i], t[j] = t[j], t[i]
}
// QuickSelect(k) mutates the StringSlice so that the first k elements in the
// StringSlice are the k smallest elements in the slice. This is a convenience
// method for QuickSelect
func (t StringSlice) QuickSelect(k int) error {
return QuickSelect(t, k)
}
// isNaN is a copy of math.IsNaN to avoid a dependency on the math package.
func isNaN(f float64) bool {
return f != f
}
/*
Helper function that does all of the work for QuickSelect. This implements
Hoare's Selection Algorithm which finds the smallest k elements in an interface
in expected O(n) time.
The algorithm works by finding a random pivot element, and making sure all the
elements to the left are less than the pivot element and vice versa for
elements on the right. Recursing on this solves the selection algorithm.
*/
func randomizedSelectionFinding(data Interface, low, high, k int) {
var pivotIndex int
for {
if low >= high {
return
} else if high-low <= partitionThreshold {
insertionSort(data, low, high+1)
return
}
pivotIndex = rand.Intn(high+1-low) + low
pivotIndex = partition(data, low, high, pivotIndex)
if k < pivotIndex {
high = pivotIndex - 1
} else if k > pivotIndex {
low = pivotIndex + 1
} else {
return
}
}
}
// Insertion sort
func insertionSort(data Interface, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data.Less(j, j-1); j-- {
data.Swap(j, j-1)
}
}
}
/*
This method does a run over all of the data keeps a list of the k smallest
indices that it has seen so far. At the end, it swaps those k elements and
moves them to the front.
*/
func naiveSelectionFinding(data Interface, k int) {
smallestIndices := make([]int, k)
for i := 0; i < k; i++ {
smallestIndices[i] = i
}
resetLargestIndex(smallestIndices, data)
for i := k; i < data.Len(); i++ {
if data.Less(i, smallestIndices[k-1]) {
smallestIndices[k-1] = i
resetLargestIndex(smallestIndices, data)
}
}
insertionSort(IntSlice(smallestIndices), 0, k)
for i := 0; i < k; i++ {
data.Swap(i, smallestIndices[i])
}
}
/*
Takes the largest index in `indices` according to the data Interface and places
it at the end of the indices array.
*/
func resetLargestIndex(indices []int, data Interface) {
var largestIndex = 0
var currentLargest = indices[0]
for i := 1; i < len(indices); i++ {
if data.Less(currentLargest, indices[i]) {
largestIndex = i
currentLargest = indices[i]
}
}
indices[len(indices)-1], indices[largestIndex] = indices[largestIndex], indices[len(indices)-1]
}
/*
Helper function for the selection algorithm. Returns the partitionIndex.
It goes through all elements between low and high and makes sure that the
elements in the range [low, partitionIndex) are less than the element that was
originally in the pivotIndex and that the elements in the range
[paritionIndex + 1, high] are greater than the element originally in the
pivotIndex.
*/
func partition(data Interface, low, high, pivotIndex int) int {
partitionIndex := low
data.Swap(pivotIndex, high)
for i := low; i < high; i++ {
if data.Less(i, high) {
data.Swap(i, partitionIndex)
partitionIndex++
}
}
data.Swap(partitionIndex, high)
return partitionIndex
}
type dataHeap struct {
heapIndices []int
data Interface
}
func (h dataHeap) Len() int { return len(h.heapIndices) }
func (h dataHeap) Less(i, j int) bool { return h.data.Less(h.heapIndices[j], h.heapIndices[i]) }
func (h dataHeap) Swap(i, j int) {
h.heapIndices[i], h.heapIndices[j] = h.heapIndices[j], h.heapIndices[i]
}
func (h *dataHeap) Push(x interface{}) {
h.heapIndices = append(h.heapIndices, x.(int))
}
func (h *dataHeap) Pop() interface{} {
old := h.heapIndices
n := len(old)
x := old[n-1]
h.heapIndices = old[0 : n-1]
return x
}
/*
This method implements the heap strategy for selecting the smallest k elements.
It keeps a max-heap of the smallest k elements seen so far as we iterate over
all of the elements. It adds a new element and pops the largest element.
*/
func heapSelectionFinding(data Interface, k int) {
heapIndices := make([]int, k)
for i := 0; i < k; i++ {
heapIndices[i] = i
}
h := &dataHeap{heapIndices, data}
heap.Init(h)
var currentHeapMax int
for i := k; i < data.Len(); i++ {
currentHeapMax = h.heapIndices[0]
if data.Less(i, currentHeapMax) {
heap.Push(h, i)
heap.Pop(h)
}
}
insertionSort(IntSlice(h.heapIndices), 0, len(h.heapIndices))
for i := 0; i < len(h.heapIndices); i++ {
data.Swap(i, h.heapIndices[i])
}
}
/*
QuickSelect swaps elements in the data provided so that the first k elements
(i.e. the elements occuping indices 0, 1, ..., k-1) are the smallest k elements
in the data.
QuickSelect implements Hoare's Selection Algorithm and runs in O(n) time, so it
is asymptotically faster than sorting or other heap-like implementations for
finding the smallest k elements in a data structure.
Note that k must be in the range [0, data.Len()), otherwise the QuickSelect
method will raise an error.
*/
func QuickSelect(data Interface, k int) error {
length := data.Len()
if k < 1 || k > length {
message := fmt.Sprintf("The specified index '%d' is outside of the data's range of indices [0,%d)", k, length)
return errors.New(message)
}
kRatio := float64(k) / float64(length)
if length <= naiveSelectionLengthThreshold && k <= naiveSelectionThreshold {
naiveSelectionFinding(data, k)
} else if kRatio <= heapSelectionKRatio && k <= heapSelectionThreshold {
heapSelectionFinding(data, k)
} else {
randomizedSelectionFinding(data, 0, length-1, k)
}
return nil
}
// IntQuickSelect mutates the data so that the first k elements in the int
// slice are the k smallest elements in the slice. This is a convenience
// method for QuickSelect on int slices.
func IntQuickSelect(data []int, k int) error {
return QuickSelect(IntSlice(data), k)
}
// Float64Select mutates the data so that the first k elements in the float64
// slice are the k smallest elements in the slice. This is a convenience
// method for QuickSelect on float64 slices.
func Float64QuickSelect(data []float64, k int) error {
return QuickSelect(Float64Slice(data), k)
}
// StringQuickSelect mutates the data so that the first k elements in the string
// slice are the k smallest elements in the slice. This is a convenience
// method for QuickSelect on string slices.
func StringQuickSelect(data []string, k int) error {
return QuickSelect(StringSlice(data), k)
}