-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathsimple_brains.py
1129 lines (940 loc) · 48 KB
/
simple_brains.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This part of code defines the brain of the agent.
- decisions are made here
- the q-table is updated here
The parent Agent is a abstract class:
- learn() method is a virtual method (to be defined)
- q_table is store
- Tabular representation of the discrete (action/state) pairs and the associated q-value:
Inherited classes are:
-- One Monte-Carlo control algorithms
- q_table is a defaultdict
-- Four TD-based model-free control algorithms
- q_table is a pandas DataFrame
- Only the learn() method differs:
- Q-learning (= max-SARSA)
- SARSA
- SARSA-lambda
- expected-SARSA
-- One model-based Monte-Carlo Dynamic Programming method
Note about terminology:
- TD-based = Temporal Difference = all make Sample Back-Up (as opposed to DP = dynamic programming)
- On-policy SARSA learns action values relative to the policy it follows
While off-policy Q-Learning does it relative to the greedy policy.
| | SARSA | Q-learning |
|:-----------:|:-----:|:----------:|
| Choosing a_ | π | π |
| Updating Q | π | μ |
- In other words, Q-learning is trying to evaluate π while following another policy μ, so it's an off-policy algorithm.
- Q-Learning tends to converge a little slower, but has the capability to continue learning while changing policies.
- Also, Q-Learning is not guaranteed to converge when combined with linear approximation.
- Model-free / Model-based
- Ask yourself this question:
- After learning, can the agent make predictions about next state and reward before it takes each action?
-- If it can, then it’s a model-based RL algorithm.
-- If it cannot, it’s a model-free algorithm.
Structure of the object named "q_table":
[id][-------------------------actions---------------------------] [--state features--]
no_change speed_up speed_up_up slow_down slow_down_down position velocity
0 -4.500 -4.500000 3.1441 -3.434166 -3.177462 0.0 0.0
1 -1.260 -1.260000 9.0490 0.000000 0.000000 2.0 2.0
2 0.396 0.000000 0.0000 0.000000 0.000000 4.0 2.0
3 2.178 0.000000 0.0000 0.000000 0.000000 6.0 2.0
# ToDo:
- try approximation function (Fixed Sparse Representations), (Incremental Feature Dependency Discovery)
- decay learning rate
- expand the state space - add changing pedestrian position
- make the initial state random
"""
import numpy as np
import time
import pickle
from copy import copy
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
from abc import ABC, abstractmethod
import os
from collections import defaultdict
plt.rcParams['figure.figsize'] = [20, 10]
class Agent(ABC):
def __init__(self, actions_names, state_features, load_q_table=False):
"""
Parent abstract class (the method learn() is to be defined)
:param actions_names: [string] list of possible actions
:param state_features: [string] list of features forming the state
:param load_q_table: [bool] flag to load the q-values DataFrame from file
"""
# environment information
self.actions_list = actions_names # string!
self.state_features_list = state_features # string!
self.columns_q_table = actions_names + state_features # string!
# structure to store the q-values of the (state/action) pairs
self.q_table = None
if load_q_table:
if self.load_q_table():
print("Load success")
else:
self.reset_q_table()
else:
self.reset_q_table()
# print(self.q_table.columns)
# settings for plotting
colours_list = ['green', 'red', 'blue', 'yellow', 'orange']
self.action_to_color = dict(zip(self.actions_list, colours_list))
self.size_of_largest_element = 800
# monitoring the evolution of one q-value
self.reference_list = []
def reset_q_table(self):
self.q_table = pd.DataFrame(columns=self.columns_q_table, dtype=np.float32)
print("reset_q_table - self.q_table has shape = {}".format(self.q_table.shape))
def choose_action(self, observation, masked_actions_list, greedy_epsilon):
"""
chose an action, following the policy based on the q-table
with an e_greedy approach and action masking
:param observation: [list of int] current discrete state
:param masked_actions_list: [list of string] forbidden actions
:param greedy_epsilon: [float in 0-1] probability of random choice for epsilon-greedy action selection
:return: [string] - the name of the action
"""
# print("state before choosing an action: %s " % observation)
self.check_state_exist(observation)
# apply action masking
possible_actions = [action for action in self.actions_list if action not in masked_actions_list]
if not possible_actions:
print("!!!!! WARNING - No possible_action !!!!!")
# Epsilon-greedy action selection
if np.random.uniform() > greedy_epsilon:
# choose best action
# read the row corresponding to the state
state_action = self.q_table.loc[
(self.q_table[self.state_features_list[0]] == observation[0])
& (self.q_table[self.state_features_list[1]] == observation[1])
# & (self.q_table[self.state_features_list[2]] == observation[2])
]
# only consider the action names - remove the state information
state_action = state_action.filter(self.actions_list, axis=1)
# shuffle - if different actions have equal q-values, chose randomly, not the first one
state_action = state_action.reindex(np.random.permutation(state_action.index))
# restrict to allowed actions
state_action = state_action.filter(items=possible_actions)
# print("state_action 3/3 : %s" % state_action)
# make decision
if state_action.empty:
action = random.choice(possible_actions)
print('random action sampled among allowed actions')
else:
action = state_action.idxmax(axis=1)
# Return index of first occurrence of maximum over requested axis (with shuffle)
# get first element of the pandas series
action_to_do = action.iloc[0]
# print("\tBEST action = %s " % action_to_do)
else:
# choose random action
action_to_do = np.random.choice(possible_actions)
# print("\t-- RANDOM action= %s " % action_to_do)
return action_to_do
def compare_reference_value(self):
"""
we know the value of the last-but one state at convergence: Q(s,a)=R(s,a).
since if termination_flag: q_target = r (# goal state has no value)
:return: the value of a given (state, action) pair
"""
state = [16, 3]
action_id = 0 # "no change"
self.check_state_exist(state)
id_row_previous_state = self.get_id_row_state(state)
res = self.q_table.loc[id_row_previous_state, self.actions_list[action_id]]
# should be +40
# print("reference_value = {}".format(res))
self.reference_list.append(res)
return res
@abstractmethod
def learn(self, *args):
"""
Update the agent's knowledge, using the most recently sampled tuple
This method is implemented in each children agent
"""
# raise NotImplementedError('subclasses must override learn()!')
pass
def check_state_exist(self, state):
"""
read if the state has already be encountered
if not, add it to the table and initialize its q-value
with collections.defaultdict or np.array, this would have not be required
:param state: [list of int] current discrete state
:return: -
"""
# try to find the index of the state
state_id_list_previous_state = self.q_table.index[(self.q_table[self.state_features_list[0]] == state[0]) &
(self.q_table[self.state_features_list[1]] ==
state[1])].tolist()
if not state_id_list_previous_state:
# ToDo: is zero-value initialization relevant? It seems so, yes
# append new state to q table: Q(a,s)=0 for each action a
new_data = np.concatenate((np.array(len(self.actions_list)*[0]), np.array(state)), axis=0)
# print("new_data to add %s" % new_data)
new_row = pd.Series(new_data, index=self.q_table.columns)
self.q_table = self.q_table.append(new_row, ignore_index=True)
def get_id_row_state(self, s):
"""
:param s: [list of int] state
:return: [int] id of the row corresponding to the state in self.q_table
"""
# get id of the row of the previous state (= id of the previous state)
id_list_state = self.q_table.index[(self.q_table[self.state_features_list[0]] == s[0]) &
(self.q_table[self.state_features_list[1]] == s[1])].tolist()
id_row_state = id_list_state[0]
# row = self.q_table.loc[id_row_state]
# print("row = \n{}".format(row))
# filtered_row = row.filter(self.actions_list)
# print("filtered_row = \n{}".format(filtered_row))
return id_row_state
def load_q_table(self, weight_file=None):
"""
open_model
working with h5, csv or pickle format
:return: -
"""
try:
# from pickle
if weight_file is None:
grand_grand_parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
results_dir = os.path.abspath(grand_grand_parent_dir + "/results/simple_road/" + "q_table" + '.pkl')
self.q_table = pd.read_pickle(results_dir)
else:
self.q_table = pd.read_pickle(weight_file)
return True
except Exception as e:
print(e)
return False
def save_q_table(self, save_directory):
"""
at the end, save the q-table
several extensions are possible:
see for comparison: https://stackoverflow.com/questions/17098654/how-to-store-a-dataframe-using-pandas
:return: -
"""
filename = "q_table"
# sort series according to the position
self.q_table = self.q_table.sort_values(by=[self.state_features_list[0]])
try:
# to pickle
self.q_table.to_pickle(save_directory + filename + ".pkl")
print("Saved as " + filename + ".pkl")
except Exception as e:
print(e)
def print_q_table(self):
"""
at the end, display the q-table
One could also use .head()
:return: -
"""
# sort series according to the position
self.q_table = self.q_table.sort_values(by=[self.state_features_list[0]])
# print(self.q_table.head())
print(self.q_table.to_string())
def plot_q_table(self, folder, display_flag):
"""
plot the q(a,s) for each s
# previously: Only plot the values attached actions - the state features serve as abscissa
# Issue: we have 2D-space. So hard to represent all on the x-abscissa
# data_frame_to_plot = self.q_table.filter(self.actions_list, axis=1)
# print(data_frame_to_plot.to_string())
# data_frame_to_plot.plot.bar()
# plt.show()
:return:
"""
fig = plt.figure()
ax1 = fig.add_subplot(111)
# not to overlap scatters
shift = 0.2
# to scale for the size of markers
# The matrix Q can then be normalized (i.e.; converted to percentage)
# by dividing all non-zero entries by the highest number (choice between max and abs(min))
min_value = min(self.q_table[self.actions_list].min(axis=0))
max_value = max(self.q_table[self.actions_list].max(axis=0))
# mean_value = (self.q_table[self.actions_list].max(axis=0)).mean
# self.q_table = (self.q_table - mean_value) / (max_value - min_value)
scale_factor = self.size_of_largest_element / max(max_value, abs(min_value))
# print(100*(self.q_table['speed_up']-min_value)/scale_factor)
# Not very efficient, but it works:
# not printing the non visited states (size = value = 0)
# distinguishing positive and negative values (marker type)
i = 0
for action in self.actions_list:
colour_for_action = self.action_to_color[action]
colour_for_action_neg = colour_for_action
markers = ['P' if i > 0 else 's' for i in self.q_table[action]]
sizes = [scale_factor * (abs(i)) for i in self.q_table[action]]
colours = [colour_for_action if i > 0 else colour_for_action_neg for i in self.q_table[action]]
for x, y, m, s, c in zip(self.q_table[self.state_features_list[0]],
self.q_table[self.state_features_list[1]], markers, sizes, colours):
ax1.scatter(x, y + i*shift, alpha=0.8, c=c, marker=m, s=s)
i += 1
# custom labels
labels_list = []
for action in self.actions_list:
label = patches.Patch(color=self.action_to_color[action], label=action)
labels_list.append(label)
plt.legend(handles=labels_list)
# plot decoration
plt.title('Normalized Q(s,a) - distinguishing positive and negative values with marker type')
plt.xlabel(self.state_features_list[0])
plt.ylabel(self.state_features_list[1])
plt.xticks(np.arange(min(self.q_table[self.state_features_list[0]]),
max(self.q_table[self.state_features_list[0]]) + 1, 1.0))
plt.grid(True, alpha=0.2)
ax1.set_facecolor('silver')
plt.savefig(folder + "plot_q_table.png", dpi=800)
if display_flag:
plt.show()
def plot_optimal_actions_at_each_position(self, folder, display_flag):
"""
plotting the best action to take for each state
also quantify the relative confidence
:return: -
"""
# scaling
min_value = min(self.q_table[self.actions_list].min(axis=0))
max_value = max(self.q_table[self.actions_list].max(axis=0))
scale_factor = self.size_of_largest_element / max(max_value, abs(min_value))
# look for the best action for each state
fig = plt.figure()
ax2 = fig.add_subplot(111)
for index, row in self.q_table.iterrows():
action_value = row.filter(self.actions_list, axis=0)
action = action_value.idxmax()
value = action_value.max()
x = row[self.state_features_list[0]]
y = row[self.state_features_list[1]]
c = self.action_to_color[action]
if value > 0:
m = 'P'
else:
m = 's'
s = scale_factor * abs(value)
ax2.scatter(x, y, alpha=0.8, c=c, marker=m, s=s)
# custom labels
labels_list = []
for action in self.actions_list:
label = patches.Patch(color=self.action_to_color[action], label=action)
labels_list.append(label)
plt.legend(handles=labels_list)
# plot decoration
plt.title('Normalized max[Q(s,a)][over a] - Optimal actions - randomly selected if equal')
plt.xlabel(self.state_features_list[0])
plt.ylabel(self.state_features_list[1])
plt.xticks(np.arange(min(self.q_table[self.state_features_list[0]]),
max(self.q_table[self.state_features_list[0]]) + 1, 1.0))
plt.grid(True, alpha=0.2)
ax2.set_facecolor('silver')
plt.savefig(folder + "plot_optimal_actions_at_each_position.png", dpi=800)
if display_flag:
plt.show()
# on-policy: Unlike Q learning which is a offline updating method, Sarsa is updating while in the current trajectory
# SARSA can only learn from itself (from the experience and transition it met in the past)
class SarsaTable(Agent):
def __init__(self, actions, state, load_q_table=False):
super(SarsaTable, self).__init__(actions, state, load_q_table)
def learn(self, s, a, r, s_, a_, termination_flag, gamma, learning_rate):
"""
update the q-table based on the observed experience S.A.R.S.A
using the actual action a_ to evaluate Q(s_, a_) - SARSA is therefore said "on-policy"
q_expected = Q(s_, a_)
:param s: previous state (list of int)
:param a: action (str)
:param r: reward (int)
:param s_: new state (list of int)
:param termination_flag: (boolean)
:param a_: new action (str)
:param gamma: [float between 0 and 1] discount factor
:param learning_rate: [float between 0 and 1] - learning rate
:return: -
"""
self.check_state_exist(s_)
# get id of the row of the previous state
id_row_previous_state = self.get_id_row_state(s)
# get id of the row of the next state
id_row_next_state = self.get_id_row_state(s_)
# get q-value of the pair (previous_state, action)
q_predict = self.q_table.loc[id_row_previous_state, a]
# Check if new state is terminal
if termination_flag:
# next state is terminal
# goal state has no value
q_target = r
else:
# next state is not terminal
q_expected = self.q_table.loc[id_row_next_state, a_]
q_target = r + gamma * q_expected
# update q-value - Delta is the TD-error
self.q_table.loc[id_row_previous_state, a] += learning_rate * (q_target - q_predict)
# to compute the q_predict, make the average of q-values based on probabilities of each action
class ExpectedSarsa(Agent):
def __init__(self, actions, state, load_q_table=False):
super(ExpectedSarsa, self).__init__(actions, state, load_q_table)
def learn(self, s, a, r, s_, termination_flag, greedy_epsilon, gamma, learning_rate):
"""
update the q-table based on the observed experience S.A.R.S.A
Use the expected q_value of the next state for q_expected (used to build q_target)
Expectation is w.r.t. e-greedy-policy!
e-greedy-policy is to take action = argmax(Q) with probability = 1-e
and a random choice with prob = e
hence q_expected = q_mean * e + q_max * (1-e)
:param s: previous state (list of int)
:param a: action (str)
:param r: reward (int)
:param s_: new state (list of int)
:param termination_flag: (boolean)
:param greedy_epsilon: [float]
:param gamma: [float between 0 and 1] discount factor
:param learning_rate: [float between 0 and 1] - learning rate
:return: -
"""
self.check_state_exist(s_)
# get id of the row of the previous state
id_row_previous_state = self.get_id_row_state(s)
# get id of the row of the next state
id_row_next_state = self.get_id_row_state(s_)
# get q-value of the tuple (previous_state, action)
q_predict = self.q_table.loc[id_row_previous_state, a]
# Check if new state is terminal
if termination_flag:
# next state is terminal - goal state has no value
q_target = r
# Trying to reduce chance of random action as we train the model
else:
# next state is not terminal
row = self.q_table.loc[id_row_next_state]
filtered_row = row.filter(self.actions_list)
# print("filtered_row = \n{}".format(filtered_row))
# print("max(filtered_row) = \n{}".format(max(filtered_row)))
# print("sum(filtered_row) = \n{}".format(sum(filtered_row)))
q_max = max(filtered_row)
# print("q_max = \n{}".format(q_max))
q_mean = 0
if len(filtered_row):
q_mean = sum(filtered_row)/len(filtered_row)
# print("q_mean = \n{}".format(q_mean))
q_expected = (1 - greedy_epsilon) * q_max + greedy_epsilon * q_mean
# print("q_expected = \n{}".format(q_expected))
q_target = r + gamma * q_expected
# update q-value following Q-learning - Delta is the TD-error
self.q_table.loc[id_row_previous_state, a] += learning_rate * (q_target - q_predict)
# off-policy. Q-learning = sarsa_max
class QLearningTable(Agent):
def __init__(self, actions, state, load_q_table=False):
super(QLearningTable, self).__init__(actions, state, load_q_table)
def learn(self, s, a, r, s_, termination_flag, gamma, learning_rate):
"""
update the q-table based on the observed experience S.A.R.S.
:param s: previous state (list of int)
:param a: action (str)
:param r: reward (int)
:param s_: new state (list of int)
:param termination_flag: (boolean)
:param gamma: [float between 0 and 1] discount factor
:param learning_rate: [float between 0 and 1] - learning rate
:return: -
"""
self.check_state_exist(s_)
# get id of the row of the previous state
id_row_previous_state = self.get_id_row_state(s)
# get id of the row of the next state
id_row_next_state = self.get_id_row_state(s_)
# get q-value of the tuple (previous_state, action)
q_predict = self.q_table.loc[id_row_previous_state, a]
# Check if new state is terminal
if termination_flag:
# next state is terminal
# goal state has no value
q_target = r
# Trying to reduce chance of random action as we train the model.
else:
# next state is not terminal
# consider the best value of the next state. Q-learning = sarsa_max
# using max to evaluate Q(s_, a_) - Q-learning is therefore said "off-policy"
row = self.q_table.loc[id_row_next_state]
filtered_row = row.filter(self.actions_list)
# print(s)
# print("filtered_row = \n{}".format(filtered_row))
# print("max(filtered_row) = \n{}".format(max(filtered_row)))
q_expected = max(filtered_row)
q_target = r + gamma * q_expected
# q_target = r + gamma * self.q_table.loc[id_row_next_state, :].max()
# update q-value following Q-learning - Delta is the TD-error
self.q_table.loc[id_row_previous_state, a] += learning_rate * (q_target - q_predict)
# Sarsa Lambda can learn for
# - 1 step (Sarsa) (lambda=0)
# - All the episode (Monte Carlo) (lambda=1)
# - in between (Lambda in [0,1])
# Idea is to update and give reward to all the steps that contribute to the end return
class SarsaLambdaTable(Agent):
def __init__(self, actions, state, load_q_table=False,
trace_decay=0.9):
super(SarsaLambdaTable, self).__init__(actions, state, load_q_table)
# backward view, eligibility trace.
self.lambda_trace_decay = trace_decay
# same dimension as the Q-table: it counts how many times the state has been visited
self.eligibility_trace = self.q_table.copy()
def reset_eligibility_trace(self):
# self.eligibility_trace *= 0
self.eligibility_trace[self.actions_list] = 0.0
# print(self.eligibility_trace)
def check_state_exist(self, state):
"""
read if the state has already be encountered
if not, add it to the table
update the eligibility_trace too
:param state:
:return: -
"""
# try to find the index of the state - same as for the parent Class
state_id_list_previous_state = self.q_table.index[(self.q_table[self.state_features_list[0]] == state[0]) &
(self.q_table[self.state_features_list[1]] ==
state[1])].tolist()
if not state_id_list_previous_state:
# append new state to q table: Q(a,s)=0 for each action a
new_data = np.concatenate((np.array(len(self.actions_list) * [0]), np.array(state)), axis=0)
# print("new_data to add %s" % new_data)
new_row = pd.Series(new_data, index=self.q_table.columns)
# add new row in q_table
self.q_table = self.q_table.append(new_row, ignore_index=True)
# also add it to the eligibility trace
self.eligibility_trace = self.eligibility_trace.append(new_row, ignore_index=True)
def learn(self, s, a, r, s_, a_, termination_flag, gamma, learning_rate):
"""
update the q-table based on the observed experience S.A.R.S.A
update the eligibility_trace too
:param s: previous state (list of int)
:param a: action (str)
:param r: reward (int)
:param s_: new state (list of int)
:param termination_flag: (boolean)
:param a_: new action (str)
:param gamma: [float between 0 and 1] discount factor
:param learning_rate: [float between 0 and 1] - learning rate
:return: -
"""
self.check_state_exist(s_)
# get id of the row of the previous state
id_row_previous_state = self.get_id_row_state(s)
# get id of the row of the next state
id_row_next_state = self.get_id_row_state(s_)
# get q-value of the tuple (previous_state, action)
q_predict = self.q_table.loc[id_row_previous_state, a]
# Check if new state is terminal
if termination_flag:
# next state is terminal
# goal state has no value
q_target = r
else:
# next state is not terminal
# consider the value of the next state with the action a_
# using the actual action a_ to evaluate Q(s_, a_) - SARSA is therefore said "on-policy"
q_expected = self.q_table.loc[id_row_next_state, a_]
q_target = r + gamma * q_expected
# TD-error
error = q_target - q_predict
# sarsa would have just done:
# self.q_table.loc[id_row_previous_state, a] += learning_rate * (q_target - q_predict)
# increasing the importance factor for the visited state-action pair. Two methods:
# Method 1: accumulating trace (not quite stable)
# self.eligibility_trace.loc[id_row_previous_state, a] += 1
# Method 2: replacing trace (normalization) - if I visit a state more than once, it still stays at 1, not more
self.eligibility_trace.loc[id_row_previous_state, a] = 1
# q_table update - most state will not be considered
# ToDo: it is not necessary to consider all the states. Just those encountered during the episode
# The importance factor (=eligibility_trace) says how important is to travel by this state to get the return
self.q_table[self.actions_list] += learning_rate * error * self.eligibility_trace[self.actions_list]
# print("self.q_table[self.actions_list] = \n{}".format(self.q_table.to_string()))
# print("self.eligibility_trace[self.actions_list] = \n{}".format(self.eligibility_trace.to_string()))
# decay eligibility trace after update (before the next step)
self.eligibility_trace[self.actions_list] *= gamma * self.lambda_trace_decay
# Monte Carlo Control
class MC(Agent):
def __init__(self, actions, state, load_q_table=False):
super(MC, self).__init__(actions, state, load_q_table)
self.nA = len(actions)
# self.q_table = defaultdict(lambda: np.zeros(self.nA))
def compare_reference_value(self):
# ToDo: we know the value of the last-but one state at convergence: Q(s,a)=R(s,a).
state = (16, 3)
action_id = 0 # "no change"
res = self.q_table[state][action_id]
# should be +40
print("reference_value = {}".format(res))
return res
def reset_q_table(self):
# ToDo: dtype=np.float32 not necessary. Try lower precision
self.q_table = defaultdict(lambda: np.zeros(self.nA))
def choose_action(self, observation, masked_actions_list, greedy_epsilon):
observation = tuple(observation)
# apply action masking
possible_actions = [action for action in self.actions_list if action not in masked_actions_list]
# Epsilon-greedy action selection
if np.random.uniform() > greedy_epsilon:
# choose best action
state_action = copy(self.q_table[observation])
# print("state_action = {}".format(state_action))
# print("possible_actions = {}".format(possible_actions))
# restrict to allowed actions
for action in self.actions_list:
if action not in possible_actions:
action_id = self.actions_list.index(action)
state_action[action_id] = -np.inf # using a copy
# print("filtered state_action = {}".format(state_action))
# make decision
if np.all(np.isneginf([state_action])):
action_id = random.choice(possible_actions)
print('random action sampled among allowed actions')
else:
action_id = np.argmax(state_action)
# Return index of first occurrence of maximum over requested axis (with shuffle)
action_to_do = self.actions_list[action_id]
else:
action_to_do = np.random.choice(possible_actions)
return action_to_do
def learn(self, episode, gamma, learning_rate):
""" updates the action-value function estimate using the most recent episode """
states, actions, rewards = zip(*episode)
# print("states = {}".format(states))
# print("rewards = {}".format(rewards))
# print("actions = {}".format(actions))
# prepare for discounting
discounts = np.array([gamma ** i for i in range(len(rewards) + 1)])
for i, state in enumerate(states):
action_id = self.actions_list.index(actions[i])
# print(actions[i])
# print(action_id)
old_q = self.q_table[state][action_id]
self.q_table[state][action_id] = old_q + learning_rate * (sum(rewards[i:] * discounts[:-(1 + i)]) - old_q)
def save_q_table(self, save_directory):
"""
"""
filename = "q_table"
try:
# to pickle
output = open(save_directory + filename + ".pkl", 'wb')
pickle.dump(dict(self.q_table), output)
output.close()
print("Saved as " + filename + ".pkl")
except Exception as e:
print(e)
def print_q_table(self):
# sort series according to the position
q_table_dict = dict(self.q_table)
q_table_pandas = pd.DataFrame(columns=self.columns_q_table, dtype=np.float32)
for state, q_values in q_table_dict.items():
new_data = np.concatenate((np.array(q_values), np.array(state)), axis=0)
# print("new_data to add %s" % new_data)
new_row = pd.Series(new_data, index=q_table_pandas.columns)
q_table_pandas = q_table_pandas.append(new_row, ignore_index=True)
q_table_pandas = q_table_pandas.sort_values(by=[self.state_features_list[0]])
print(q_table_pandas.to_string())
def load_q_table(self, weight_file=None):
"""
open_model
working with h5, csv or pickle format
:return: -
"""
try:
# from pickle
print(weight_file)
loaded_dict = pd.read_pickle(weight_file)
print(type(loaded_dict))
self.q_table = defaultdict(lambda: np.zeros(self.nA))
for state, value in loaded_dict.items():
for i, q in enumerate(value):
# print("state = {}".format(state))
# print("i = {}".format(i))
# print("q = {}".format(q))
self.q_table[state][i] = q
return True
except Exception as e:
print(e)
return False
# Model-based
class DP(Agent):
"""
DP stands for Dynamic Programming
Model-Based: it has access to the Reward and Transition functions
Agent used to get the optimal values (to set the success_threshold)
"""
def __init__(self, actions, state, env, gamma, load_q_table=False):
super(DP, self).__init__(actions, state, load_q_table)
self.env = env
self.nA = len(actions)
self.n_position = 20
self.n_velocity = 6
self.gamma = gamma
def learn(self):
pass
def get_value_from_state(self, state, action):
"""
debug: make one step in the environment
"""
[p, v] = state
self.env.reset()
self.env.move_to_state([p, v]) # teleportation
next_observation, reward, termination_flag, _ = self.env.step(action)
return next_observation, reward, termination_flag
def run_policy(self, policy, initial_state, max_nb_steps=100):
"""
run one episode with a policy
"""
self.env.reset()
# from Policy to Value Functions - for debug
v_table = self.policy_evaluation(policy=policy)
q_table = self.q_from_v(v_table)
current_observation = initial_state
self.env.move_to_state(initial_state) # say the env to move to state [p][v]
return_of_episode = 0
trajectory = []
step_count = 0
while step_count < max_nb_steps:
step_count += 1
policy_for_this_state = policy[current_observation[0], current_observation[1]]
print("policy_for_this_state = {}".format(policy_for_this_state))
print("q_values_for_this_state = {}".format(q_table[current_observation[0], current_observation[1]]))
action_id = np.argmax(policy[current_observation[0], current_observation[1]])
action = self.actions_list[action_id]
print("action = {}".format(action))
trajectory.append(current_observation)
trajectory.append(action)
next_observation, reward, termination_flag, _ = self.env.step(action)
print(" {}, {}, {} = results".format(next_observation, reward, termination_flag))
return_of_episode += reward
current_observation = next_observation
if termination_flag:
trajectory.append(next_observation)
break
print("return_of_episode = {}".format(return_of_episode))
print("Trajectory = {}".format(trajectory))
return return_of_episode, trajectory
def q_from_v(self, v_table):
"""
from the Value Function (for each state) to the Q-value Function (for each [state, action] pair)
it makes sure masked actions have -np.inf values
"""
q_table = np.ones((self.n_position, self.n_velocity, self.nA))
# loop over all possible states (p, v)
for p in range(self.n_position):
for v in range(self.n_velocity):
masked_actions_list = self.env.masking_function([p, v])
possible_actions = [action for action in self.actions_list if action not in masked_actions_list]
# print("possible_actions = {} for state = {}".format(possible_actions, [p, v]))
for action_id in range(self.nA):
self.env.move_to_state([p, v]) # say the env to move on on state [p][v]
action = self.actions_list[action_id]
if action in possible_actions:
# print(" -- ")
# print(" {} taken in {}".format(action, [p, v]))
next_observation, reward, termination_flag, _ = self.env.step(action)
prob = 1 # it is a deterministic environment
if termination_flag:
# print(" with termination_flag, Q = prob {} * reward {}".format(prob, reward))
q_table[p][v][action_id] = prob * reward
else:
next_p = next_observation[0]
next_v = next_observation[1]
# print(" No termination_flag")
q_table[p][v][action_id] = prob * (reward + self.gamma * v_table[next_p][next_v])
else:
# print("Action {} cannot be taken in {}".format(action, [p, v]))
q_table[p][v][action_id] = -np.inf # masked action
return q_table
def policy_improvement(self, v_table):
"""
Used by Policy Iteration + Value Iteration
Optimality Bellman operator:
- from Value Function to a Policy
- contains a max operator, which is non linear
Two algorithms are highly similar (in their key steps):
- policy improvement (this one involves a stability check) for Policy_Iteration
- policy extraction (for Value_Iteration)
"""
policy = np.zeros([self.n_position, self.n_velocity, self.nA]) / self.nA
for p in range(self.n_position):
for v in range(self.n_velocity):
q_table = self.q_from_v(v_table)
# OPTION 1: construct a deterministic policy
# policy[p][v][np.argmax(q_table[p][v])] = 1 # make sure we have policy initialized with np.zeros()
# OPTION 2: construct a stochastic policy that puts equal probability on maximizing actions
best_a = np.argwhere(q_table[p][v] == np.max(q_table[p][v])).flatten()
policy[p][v] = np.sum([np.eye(self.nA)[i] for i in best_a], axis=0) / len(best_a)
return policy
# truncated policy_evaluation
def policy_evaluation(self, theta_value_function=10e-3, policy=None, max_counter=1e3):
"""
From a Policy to its Value Function
Used by Policy Iteration
Truncated: No need to have the true absolute value function. The relative values are enough to get the Policy
Two algorithms are highly similar except for a max operation:
- policy evaluation (for Policy_Iteration)
- finding optimal value function (for Value_Iteration)
# -26.40 = v_table[19, 2] with random policy. Correct
:param theta_value_function: threshold to consider two value functions similar
:param policy: policy[state] = policy[p][v] = probabilities (numpy array) of taking each of the actions
:param max_counter: truncated aspect - to stop iterations
:return:
"""
if policy is None:
policy = np.ones([self.n_position, self.n_velocity, self.nA]) / self.nA # random_policy
# initialize arbitrarily
v_table = np.zeros((self.n_position, self.n_velocity))
counter = 0
while counter < max_counter:
counter += 1
if counter % 1000 == 0:
print(" --- {} policy_evaluation --- ".format(counter))
delta_value_functions = 0
# loop over all possible states (p, v)
for p in range(self.n_position):
for v in range(self.n_velocity):
v_state = 0
masked_actions_list = self.env.masking_function([p, v])
# print("masked_actions_list = {}".format(masked_actions_list ))
possible_actions = [action for action in self.actions_list if action not in masked_actions_list]
# prob = 1 / len(possible_actions)
# policy[p][v] = [0.20 0.20 0.20 0.20 0.20]
for action_id, action_prob in enumerate(policy[p][v]):
self.env.move_to_state([p, v]) # say the env to move on on state [p][v]
# print(" {} == {}".format([self.env.state_ego_position, self.env.state_ego_velocity], [p, v]))
action = self.actions_list[action_id]
if action in possible_actions:
# print(" -- ")
# print(" {} taken in {}".format(action, [p, v]))
next_observation, reward, termination_flag, _ = self.env.step(action)
prob = 1 # deterministic environment
# print(" {}, {}, {} = results".format(next_observation, reward, termination_flag))
next_p = next_observation[0]
next_v = next_observation[1]
# next_p = min(next_observation[0], self.n_position - 1)
# next_v = min(next_observation[1], self.n_velocity - 1)
# print(" {} = action_prob, prob = {}".format(action_prob, prob))
if termination_flag:
# print(" with termination_flag, V = action_prob {} * prob {} * reward {}".format(
# action_prob, prob, reward))
v_state += action_prob * prob * reward
else:
v_state += action_prob * prob * (reward + self.gamma * v_table[next_p][next_v])
delta_value_functions = max(delta_value_functions, np.abs(v_table[p][v] - v_state))
v_table[p][v] = v_state
# print("v_state = {}".format(v_state))
if delta_value_functions < theta_value_function:
break
return v_table
# truncated Policy_Iteration
def policy_iteration(self, theta_value_function=1e-3, theta_final_value_function=1e-5, max_counter=1e3):
"""
To approximate the optimal policy and value function
Duration of Policy Iteration = 12.44 - counter = 5 - delta_policy = 0.0 with theta = 1e-3 and final theta = 1e-5
Start with a random policy
Policy iteration includes: