-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgt_irish.cpp
377 lines (303 loc) · 13.9 KB
/
gt_irish.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*****************************************************************************
*
* GT_Irish holds Irish grid coordinates
* GT_WGS84 holds WGS84 latitude and longitude
* GT_Math is a collection of static methods doing all the nasty sums
*
* Converted to C++ from the code here: http://www.nearby.org.uk/tests/GeoTools2.html
*
*****************************************************************************/
#include "stdafx.h"
#include "os_coord.h"
#include "gt_irish.h"
namespace PhotoGridRef {
/*****************************************************************************
*
* GT_OSGB holds OSGB grid coordinates
*
*****************************************************************************/
GT_Irish::GT_Irish() {
northings = 0;
eastings = 0;
status = L"Undefined";
}
void GT_Irish::setGridCoordinates(double _eastings, double _northings, double _height)
{
northings = _northings;
eastings = _eastings;
height = _height;
status = L"OK";
}
os_grid_ref_t GT_Irish::getGridRef()
{
// An invalid grid reference (to start with)
os_grid_ref_t grid_ref;
int y = (int)(floor(northings / 100000));
int x = (int)(floor(eastings / 100000));
grid_ref.code[0] = prefixes[x][y];
grid_ref.code[1] = L'\0';
grid_ref.e = fmod(eastings, 100000.0);
grid_ref.n = fmod(northings, 100000.0);
grid_ref.h = height;
return grid_ref;
}
void GT_Irish::setError(std::wstring msg) {
status = msg;
}
/*****************************************************************************
*
* GT_WGS84 holds WGS84 latitude and longitude
*
*****************************************************************************/
GT_WGS84::GT_WGS84(double _latitude, double _longitude, double _height) {
latitude = _latitude;
longitude = _longitude;
height = _height;
}
bool GT_WGS84::isIreland()
{
return latitude > 51.2 &&
latitude < 55.73 &&
longitude > -12.2 &&
longitude < -4.8;
}
GT_Irish GT_WGS84::getIrish(bool uselevel2) /* FALSE seems to be consistent with irish.gridreferencefinder.com */
{
GT_Irish irish;
if (isIreland())
{
double height = 0;
double latitude2, longitude2;
if (uselevel2) {
double x1 = GT_Math::Lat_Long_H_to_X(latitude, longitude, height, 6378137.00, 6356752.313);
double y1 = GT_Math::Lat_Long_H_to_Y(latitude, longitude, height, 6378137.00, 6356752.313);
double z1 = GT_Math::Lat_H_to_Z(latitude, height, 6378137.00, 6356752.313);
double x2 = GT_Math::Helmert_X(x1, y1, z1, -482.53, -0.214, -0.631, -8.15);
double y2 = GT_Math::Helmert_Y(x1, y1, z1, 130.596, -1.042, -0.631, -8.15);
double z2 = GT_Math::Helmert_Z(x1, y1, z1, -564.557, -1.042, -0.214, -8.15);
latitude2 = GT_Math::XYZ_to_Lat(x2, y2, z2, 6377340.189, 6356034.447);
longitude2 = GT_Math::XYZ_to_Long(x2, y2);
}
else {
latitude2 = latitude;
longitude2 = longitude;
}
double e = GT_Math::Lat_Long_to_East(latitude2, longitude2, 6377340.189, 6356034.447, 200000, 1.000035, 53.50000, -8.00000);
double n = GT_Math::Lat_Long_to_North(latitude2, longitude2, 6377340.189, 6356034.447, 200000, 250000, 1.000035, 53.50000, -8.00000);
if (!uselevel2) {
//Level 1 Transformation - 95% of points within 2 metres
//fixed datum shift correction (instead of fancy hermert translation above!)
//source http://www.osni.gov.uk/downloads/Making%20maps%20GPS%20compatible.pdf
e = e + 49;
n = n - 23.4;
}
irish.setGridCoordinates(round(e), round(n), height);
}
else
{
irish.setError(L"Coordinate not within Ireland");
}
return irish;
}
/*****************************************************************************
*
* GT_Math is a collection of static methods doing all the nasty sums
*
*****************************************************************************/
double GT_Math::Lat_Long_to_East(double PHI, double LAM, double a, double b, double e0, double f0, double PHI0, double LAM0)
{
//Project Latitude and longitude to Transverse Mercator eastings.
//Input: - _
// Latitude (PHI) and Longitude (LAM) in decimal degrees; _
// ellipsoid axis dimensions (a & b) in meters; _
// eastings of false origin (e0) in meters; _
// central meridian scale factor (f0); _
// latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.
// Convert angle measures to radians
double Pi = 3.14159265358979;
double RadPHI = PHI * (Pi / 180);
double RadLAM = LAM * (Pi / 180);
double RadPHI0 = PHI0 * (Pi / 180);
double RadLAM0 = LAM0 * (Pi / 180);
double af0 = a * f0;
double bf0 = b * f0;
double e2 = (pow(af0, 2) - pow(bf0, 2)) / pow(af0, 2);
double n = (af0 - bf0) / (af0 + bf0);
double nu = af0 / (sqrt(1 - (e2 * pow(sin(RadPHI), 2))));
double rho = (nu * (1 - e2)) / (1 - (e2 * pow(sin(RadPHI), 2)));
double eta2 = (nu / rho) - 1;
double p = RadLAM - RadLAM0;
double IV = nu * (cos(RadPHI));
double V = (nu / 6) * (pow(cos(RadPHI), 3)) * ((nu / rho) - (pow(tan(RadPHI), 2)));
double VI = (nu / 120) * (pow(cos(RadPHI), 5)) * (5 - (18 * (pow(tan(RadPHI), 2))) + (pow(tan(RadPHI), 4)) + (14 * eta2) - (58 * (pow(tan(RadPHI), 2)) * eta2));
return e0 + (p * IV) + (pow(p, 3) * V) + (pow(p, 5) * VI);
}
double GT_Math::Lat_Long_to_North(double PHI, double LAM, double a, double b, double e0, double n0, double f0, double PHI0, double LAM0) {
// Project Latitude and longitude to Transverse Mercator northings
// Input: - _
// Latitude (PHI) and Longitude (LAM) in decimal degrees; _
// ellipsoid axis dimensions (a & b) in meters; _
// eastings (e0) and northings (n0) of false origin in meters; _
// central meridian scale factor (f0); _
// latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.
// REQUIRES THE "Marc" FUNCTION
// Convert angle measures to radians
double Pi = 3.14159265358979;
double RadPHI = PHI * (Pi / 180);
double RadLAM = LAM * (Pi / 180);
double RadPHI0 = PHI0 * (Pi / 180);
double RadLAM0 = LAM0 * (Pi / 180);
double af0 = a * f0;
double bf0 = b * f0;
double e2 = (pow(af0, 2) - pow(bf0, 2)) / pow(af0, 2);
double n = (af0 - bf0) / (af0 + bf0);
double nu = af0 / (sqrt(1 - (e2 * pow(sin(RadPHI), 2))));
double rho = (nu * (1 - e2)) / (1 - (e2 * pow(sin(RadPHI), 2)));
double eta2 = (nu / rho) - 1;
double p = RadLAM - RadLAM0;
double M = GT_Math::Marc(bf0, n, RadPHI0, RadPHI);
double I = M + n0;
double II = (nu / 2) * (sin(RadPHI)) * (cos(RadPHI));
double III = ((nu / 24) * (sin(RadPHI)) * (pow(cos(RadPHI), 3))) * (5 - (pow(tan(RadPHI), 2)) + (9 * eta2));
double IIIA = ((nu / 720) * (sin(RadPHI)) * (pow(cos(RadPHI), 5))) * (61 - (58 * (pow(tan(RadPHI), 2))) + (pow(tan(RadPHI), 4)));
return I + (pow(p, 2) * II) + (pow(p, 4) * III) + (pow(p, 6) * IIIA);
}
double GT_Math::Lat_Long_H_to_X(double PHI, double LAM, double H, double a, double b) {
// Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian X coordinate.
// Input: - _
// Latitude (PHI)& Longitude (LAM) both in decimal degrees; _
// Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.
// Convert angle measures to radians
double Pi = 3.14159265358979;
double RadPHI = PHI * (Pi / 180);
double RadLAM = LAM * (Pi / 180);
// Compute eccentricity squared and nu
double e2 = (pow(a, 2) - pow(b, 2)) / pow(a, 2);
double V = a / (sqrt(1 - (e2 * (pow(sin(RadPHI), 2)))));
// Compute X
return (V + H) * (cos(RadPHI)) * (cos(RadLAM));
}
double GT_Math::Lat_Long_H_to_Y(double PHI, double LAM, double H, double a, double b) {
// Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian Y coordinate.
// Input: - _
// Latitude (PHI)& Longitude (LAM) both in decimal degrees; _
// Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.
// Convert angle measures to radians
double Pi = 3.14159265358979;
double RadPHI = PHI * (Pi / 180);
double RadLAM = LAM * (Pi / 180);
// Compute eccentricity squared and nu
double e2 = (pow(a, 2) - pow(b, 2)) / pow(a, 2);
double V = a / (sqrt(1 - (e2 * (pow(sin(RadPHI), 2)))));
// Compute Y
return (V + H) * (cos(RadPHI)) * (sin(RadLAM));
}
double GT_Math::Lat_H_to_Z(double PHI, double H, double a, double b) {
// Convert geodetic coord components latitude (PHI) and height (H) to cartesian Z coordinate.
// Input: - _
// Latitude (PHI) decimal degrees; _
// Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.
// Convert angle measures to radians
double Pi = 3.14159265358979;
double RadPHI = PHI * (Pi / 180);
// Compute eccentricity squared and nu
double e2 = (pow(a, 2) - pow(b, 2)) / pow(a, 2);
double V = a / (sqrt(1 - (e2 * (pow(sin(RadPHI), 2)))));
// Compute X
return ((V * (1 - e2)) + H) * (sin(RadPHI));
}
double GT_Math::Helmert_X(double X, double Y, double Z, double DX, double Y_Rot, double Z_Rot, double s) {
// (X, Y, Z, DX, Y_Rot, Z_Rot, s)
// Computed Helmert transformed X coordinate.
// Input: - _
// cartesian XYZ coords (X,Y,Z), X translation (DX) all in meters ; _
// Y and Z rotations in seconds of arc (Y_Rot, Z_Rot) and scale in ppm (s).
// Convert rotations to radians and ppm scale to a factor
double Pi = 3.14159265358979;
double sfactor = s * 0.000001;
double RadY_Rot = (Y_Rot / 3600) * (Pi / 180);
double RadZ_Rot = (Z_Rot / 3600) * (Pi / 180);
//Compute transformed X coord
return (X + (X * sfactor) - (Y * RadZ_Rot) + (Z * RadY_Rot) + DX);
}
double GT_Math::Helmert_Y(double X, double Y, double Z, double DY, double X_Rot, double Z_Rot, double s) {
// (X, Y, Z, DY, X_Rot, Z_Rot, s)
// Computed Helmert transformed Y coordinate.
// Input: - _
// cartesian XYZ coords (X,Y,Z), Y translation (DY) all in meters ; _
// X and Z rotations in seconds of arc (X_Rot, Z_Rot) and scale in ppm (s).
// Convert rotations to radians and ppm scale to a factor
double Pi = 3.14159265358979;
double sfactor = s * 0.000001;
double RadX_Rot = (X_Rot / 3600) * (Pi / 180);
double RadZ_Rot = (Z_Rot / 3600) * (Pi / 180);
// Compute transformed Y coord
return (X * RadZ_Rot) + Y + (Y * sfactor) - (Z * RadX_Rot) + DY;
}
double GT_Math::Helmert_Z(double X, double Y, double Z, double DZ, double X_Rot, double Y_Rot, double s) {
// (X, Y, Z, DZ, X_Rot, Y_Rot, s)
// Computed Helmert transformed Z coordinate.
// Input: - _
// cartesian XYZ coords (X,Y,Z), Z translation (DZ) all in meters ; _
// X and Y rotations in seconds of arc (X_Rot, Y_Rot) and scale in ppm (s).
//
// Convert rotations to radians and ppm scale to a factor
double Pi = 3.14159265358979;
double sfactor = s * 0.000001;
double RadX_Rot = (X_Rot / 3600) * (Pi / 180);
double RadY_Rot = (Y_Rot / 3600) * (Pi / 180);
// Compute transformed Z coord
return (-1 * X * RadY_Rot) + (Y * RadX_Rot) + Z + (Z * sfactor) + DZ;
}
double GT_Math::XYZ_to_Lat(double X, double Y, double Z, double a, double b) {
// Convert XYZ to Latitude (PHI) in Dec Degrees.
// Input: - _
// XYZ cartesian coords (X,Y,Z) and ellipsoid axis dimensions (a & b), all in meters.
// THIS FUNCTION REQUIRES THE "Iterate_XYZ_to_Lat" FUNCTION
// THIS FUNCTION IS CALLED BY THE "XYZ_to_H" FUNCTION
double RootXYSqr = sqrt(pow(X, 2) + pow(Y, 2));
double e2 = (pow(a, 2) - pow(b, 2)) / pow(a, 2);
double PHI1 = atan2(Z, (RootXYSqr * (1 - e2)));
double PHI = GT_Math::Iterate_XYZ_to_Lat(a, e2, PHI1, Z, RootXYSqr);
double Pi = 3.14159265358979;
return PHI * (180 / Pi);
}
double GT_Math::Iterate_XYZ_to_Lat(double a, double e2, double PHI1, double Z, double RootXYSqr) {
// Iteratively computes Latitude (PHI).
// Input: - _
// ellipsoid semi major axis (a) in meters; _
// eta squared (e2); _
// estimated value for latitude (PHI1) in radians; _
// cartesian Z coordinate (Z) in meters; _
// RootXYSqr computed from X & Y in meters.
// THIS FUNCTION IS CALLED BY THE "XYZ_to_PHI" FUNCTION
// THIS FUNCTION IS ALSO USED ON IT'S OWN IN THE _
// "Projection and Transformation Calculations.xls" SPREADSHEET
double V = a / (sqrt(1 - (e2 * pow(sin(PHI1), 2))));
double PHI2 = atan2((Z + (e2 * V * (sin(PHI1)))), RootXYSqr);
while (abs(PHI1 - PHI2) > 0.000000001) {
PHI1 = PHI2;
V = a / (sqrt(1 - (e2 * pow(sin(PHI1), 2))));
PHI2 = atan2((Z + (e2 * V * (sin(PHI1)))), RootXYSqr);
}
return PHI2;
}
double GT_Math::XYZ_to_Long(double X, double Y) {
// Convert XYZ to Longitude (LAM) in Dec Degrees.
// Input: - _
// X and Y cartesian coords in meters.
double Pi = 3.14159265358979;
return atan2(Y, X) * (180 / Pi);
}
double GT_Math::Marc(double bf0, double n, double PHI0, double PHI) {
//Compute meridional arc.
//Input: - _
// ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters; _
// n (computed from a, b and f0); _
// lat of false origin (PHI0) and initial or final latitude of point (PHI) IN RADIANS.
//THIS FUNCTION IS CALLED BY THE - _
// "Lat_Long_to_North" and "InitialLat" FUNCTIONS
// THIS FUNCTION IS ALSO USED ON IT'S OWN IN THE "Projection and Transformation Calculations.xls" SPREADSHEET
return bf0 * (((1 + n + ((5 / 4) * pow(n, 2)) + ((5 / 4) * pow(n, 3))) * (PHI - PHI0)) - (((3 * n) + (3 * pow(n, 2)) + ((21 / 8) * pow(n, 3))) * (sin(PHI - PHI0)) * (cos(PHI + PHI0))) + ((((15 / 8 ) * pow(n, 2)) + ((15 / 8) * pow(n, 3))) * (sin(2 * (PHI - PHI0))) * (cos(2 * (PHI + PHI0)))) - (((35 / 24) * pow(n, 3)) * (sin(3 * (PHI - PHI0))) * (cos(3 * (PHI + PHI0)))));
}
};