-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathos_coord_transform.c
249 lines (202 loc) · 7.1 KB
/
os_coord_transform.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/**
* OS Coord: A Simple OS Coordinate Transformation Library for C
*
* This is a port of a the Javascript library produced by Chris Veness available
* from http://www.movable-type.co.uk/scripts/latlong-gridref.html.
*
* These functions are largely based on the guide in "A guide to coordinate
* systems in Great Britain", Section 6.
*/
#include <stdio.h>
#include <math.h>
#include "os_coord.h"
#include "os_coord_transform.h"
#include "os_coord_math.h"
os_cartesian_t
os_lat_lon_to_cartesian( os_lat_lon_t point
, os_ellipsoid_t ellipsoid
)
{
double sinPhi = sin(point.lat);
double cosPhi = cos(point.lat);
double sinLambda = sin(point.lon);
double cosLambda = cos(point.lon);
double eSq = ((ellipsoid.a*ellipsoid.a) - (ellipsoid.b*ellipsoid.b))
/ (ellipsoid.a*ellipsoid.a);
double nu = ellipsoid.a / sqrt(1.0 - (eSq*(sinPhi*sinPhi)));
os_cartesian_t cart_point;
cart_point.x = (nu+point.eh) * cosPhi * cosLambda;
cart_point.y = (nu+point.eh) * cosPhi * sinLambda;
cart_point.z = ((1.0-eSq)*nu + point.eh) * sinPhi;
return cart_point;
}
os_lat_lon_t
os_cartesian_to_lat_lon( os_cartesian_t point
, os_ellipsoid_t ellipsoid
)
{
// results accurate to around the given number of metres
double precision = OS_CART_TO_LAT_LON_PRECISION / ellipsoid.a;
double eSq = ((ellipsoid.a*ellipsoid.a) - (ellipsoid.b*ellipsoid.b))
/ (ellipsoid.a*ellipsoid.a);
double p = sqrt((point.x*point.x) + (point.y*point.y));
double phi = atan2(point.z, p*(1.0-eSq));
double phiP = 2.0*PI;
double nu;
while (fabs(phi-phiP) > precision) {
nu = ellipsoid.a / sqrt(1.0 - eSq*(sin(phi)*sin(phi)));
phiP = phi;
phi = atan2(point.z + eSq*nu*sin(phi), p);
}
os_lat_lon_t lat_lon;
lat_lon.lat = phi;
lat_lon.lon = atan2(point.y, point.x);
lat_lon.eh = p/cos(phi) - nu;
return lat_lon;
}
os_helmert_t
os_helmert_invert(os_helmert_t helmert)
{
os_helmert_t new_helmert;
new_helmert.tx = -helmert.tx;
new_helmert.ty = -helmert.ty;
new_helmert.tz = -helmert.tz;
new_helmert.rx = -helmert.rx;
new_helmert.ry = -helmert.ry;
new_helmert.rz = -helmert.rz;
new_helmert.s = -helmert.s;
return new_helmert;
}
os_cartesian_t
os_helmert_transform( os_cartesian_t point
, os_helmert_t helmert
)
{
// Normalise seconds to radians
double rx = DEG_2_RAD(helmert.rx/3600.0);
double ry = DEG_2_RAD(helmert.ry/3600.0);
double rz = DEG_2_RAD(helmert.rz/3600.0);
// Normalise ppm to (1+s)
double s1 = 1+ (helmert.s/1000000.0);
// Apply transform
os_cartesian_t new_point;
new_point.x = helmert.tx + point.x*s1 - point.y*rz + point.z*ry;
new_point.y = helmert.ty + point.x*rz + point.y*s1 - point.z*rx;
new_point.z = helmert.tz - point.x*ry + point.y*rx + point.z*s1;
return new_point;
}
os_eas_nor_t
os_lat_lon_to_tm_eas_nor( os_lat_lon_t point
, os_tm_projection_t projection
)
{
// Convert to radians
double lat0 = DEG_2_RAD(projection.lat0);
double lon0 = DEG_2_RAD(projection.lon0);
// Shorter-named alias
double lat = point.lat;
double lon = point.lon;
double a = projection.ellipsoid.a;
double b = projection.ellipsoid.b;
double e2 = 1.0 - (b*b)/(a*a);
double n = (a-b)/(a+b);
double n2 = n*n;
double n3 = n*n*n;
double cosLat = cos(lat);
double sinLat = sin(lat);
// Transverse radius of curvature
double nu = a*projection.f0/sqrt(1.0-e2*sinLat*sinLat);
// Meridional radius of curvature
double rho = a*projection.f0*(1.0-e2)/pow(1.0-e2*sinLat*sinLat, 1.5);
double eta2 = nu/rho-1.0;
double Ma = (1.0 + n + (5.0/4.0)*n2 + (5.0/4.0)*n3) * (lat-lat0);
double Mb = (3.0*n + 3.0*n*n + (21.0/8.0)*n3) * sin(lat-lat0) * cos(lat+lat0);
double Mc = ((15.0/8.0)*n2 + (15.0/8.0)*n3) * sin(2.0*(lat-lat0)) * cos(2.0*(lat+lat0));
double Md = (35.0/24.0)*n3 * sin(3.0*(lat-lat0)) * cos(3.0*(lat+lat0));
// Meridional arc
double M = b * projection.f0 * (Ma - Mb + Mc - Md);
double cos3lat = cosLat*cosLat*cosLat;
double cos5lat = cos3lat*cosLat*cosLat;
double tan2lat = tan(lat)*tan(lat);
double tan4lat = tan2lat*tan2lat;
double I = M + projection.n0;
double II = (nu/2.0)*sinLat*cosLat;
double III = (nu/24.0)*sinLat*cos3lat*(5.0-tan2lat+9.0*eta2);
double IIIA = (nu/720.0)*sinLat*cos5lat*(61.0-58.0*tan2lat+tan4lat);
double IV = nu*cosLat;
double V = (nu/6.0)*cos3lat*(nu/rho-tan2lat);
double VI = (nu/120.0) * cos5lat * (5.0 - 18.0*tan2lat + tan4lat + 14.0*eta2 - 58.0*tan2lat*eta2);
double dLon = lon-lon0;
double dLon2 = dLon*dLon;
double dLon3 = dLon2*dLon;
double dLon4 = dLon3*dLon;
double dLon5 = dLon4*dLon;
double dLon6 = dLon5*dLon;
os_eas_nor_t eas_nor;
eas_nor.n = I + II*dLon2 + III*dLon4 + IIIA*dLon6;
eas_nor.e = projection.e0 + IV*dLon + V*dLon3 + VI*dLon5;
eas_nor.h = point.eh;
return eas_nor;
}
os_lat_lon_t
os_tm_eas_nor_to_lat_lon( os_eas_nor_t point
, os_tm_projection_t projection
)
{
// Convert to radians
double lat0 = DEG_2_RAD(projection.lat0);
double lon0 = DEG_2_RAD(projection.lon0);
// Shorter-named alias
double a = projection.ellipsoid.a;
double b = projection.ellipsoid.b;
// Eccentricity squared
double e2 = 1.0 - (b*b)/(a*a);
double n = (a-b)/(a+b);
double n2 = n*n;
double n3 = n*n*n;
double lat=lat0;
double M=0;
do {
lat = (point.n-projection.n0-M)/(a*projection.f0) + lat;
double Ma = (1.0 + n + (5.0/4.0)*n2 + (5.0/4.0)*n3) * (lat-lat0);
double Mb = (3.0*n + 3.0*n*n + (21.0/8.0)*n3) * sin(lat-lat0) * cos(lat+lat0);
double Mc = ((15.0/8.0)*n2 + (15.0/8.0)*n3) * sin(2.0*(lat-lat0)) * cos(2.0*(lat+lat0));
double Md = (35.0/24.0)*n3 * sin(3.0*(lat-lat0)) * cos(3.0*(lat+lat0));
// Meridional arc
M = b * projection.f0 * (Ma - Mb + Mc - Md);
} while (point.n-projection.n0-M >= OS_EAS_NOR_TO_LAT_LON_PRECISION);
double cosLat = cos(lat);
double sinLat = sin(lat);
// Transverse radius of curvature
double nu = a*projection.f0/sqrt(1.0-e2*sinLat*sinLat);
// Meridional radius of curvature
double rho = a*projection.f0*(1.0-e2)/pow(1.0-e2*sinLat*sinLat, 1.5);
double eta2 = nu/rho-1.0;
double tanLat = tan(lat);
double tan2lat = tanLat*tanLat;
double tan4lat = tan2lat*tan2lat;
double tan6lat = tan4lat*tan2lat;
double secLat = 1.0/cosLat;
double nu3 = nu*nu*nu;
double nu5 = nu3*nu*nu;
double nu7 = nu5*nu*nu;
double VII = tanLat/(2.0*rho*nu);
double VIII = tanLat/(24.0*rho*nu3)*(5.0+3.0*tan2lat+eta2-9.0*tan2lat*eta2);
double IX = tanLat/(720.0*rho*nu5)*(61.0+90.0*tan2lat+45.0*tan4lat);
double X = secLat/nu;
double XI = secLat/(6.0*nu3)*(nu/rho+2.0*tan2lat);
double XII = secLat/(120.0*nu5)*(5.0+28.0*tan2lat+24.0*tan4lat);
double XIIA = secLat/(5040.0*nu7)*(61.0+662.0*tan2lat+1320.0*tan4lat+720.0*tan6lat);
double dE = (point.e-projection.e0);
double dE2 = dE*dE;
double dE3 = dE2*dE;
double dE4 = dE2*dE2;
double dE5 = dE3*dE2;
double dE6 = dE4*dE2;
double dE7 = dE5*dE2;
os_lat_lon_t lat_lon;
lat_lon.lat = lat - VII*dE2 + VIII*dE4 - IX*dE6;
lat_lon.lon = lon0 + X*dE - XI*dE3 + XII*dE5 - XIIA*dE7;
lat_lon.eh = point.h;
return lat_lon;
}