-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiversity.py
176 lines (147 loc) · 5.35 KB
/
diversity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python3
"""Maximum similarity to an ideal ranking from files in TREC format
This script implements the *diversification* version of an evaluation
metric called "compatibility", which was developed and explored
over three papers (below). If you want to read about the measure
generally, we suggest starting with the first paper (i.e. most
recent). However, this code supports the second paper. Unless you
are specifically interested in diversity, you proably want the
script at:
https://github.com/claclark/Compatibility/blob/master/compatibility.py
1) Charles L. A. Clarke, Alexandra Vtyurina, and Mark D. Smucker. 2020.
Assessing top-k preferences
Under review. See: https://arxiv.org/abs/2007.11682
2) Charles L. A. Clarke, Mark D. Smucker, and Alexandra Vtyurina. 2020.
Offline evaluation by maximum similarity to an ideal ranking.
29th ACM Conference on Information and Knowledge Management.
3) Charles L. A. Clarke, Alexandra Vtyurina, and Mark D. Smucker. 2020.
Offline evaluation without gain.
ACM SIGIR International Conference on the Theory of Information Retrieval.
"""
import argparse
import sys
# Default persistence of 0.95, which is roughly equivalent to NSCG@20.
# Can be changed on the command line.
P = 0.95
# Depth for RBO computation. There's probably no need to ever play with this.
DEPTH = 100
def rbo(run, ideal, p):
run_set = set()
ideal_set = set()
depth = min(DEPTH, max(len(run), len(ideal)))
score = 0.0
normalizer = 0.0
weight = 1.0
for i in range(depth):
if i < len(run):
run_set.add(run[i])
if i < len(ideal):
ideal_set.add(ideal[i])
score += weight*len(ideal_set.intersection(run_set))/(i + 1)
normalizer += weight
weight *= p
return score/normalizer
def prioritize(count, available):
top = 10000000
for subtopic in count:
if count[subtopic] < available[subtopic] and top > count[subtopic]:
top = count[subtopic]
priorities = {}
for subtopic in count:
if count[subtopic] != available[subtopic] and count[subtopic] == top:
priorities[subtopic] = 1
else:
priorities[subtopic] = 0
return priorities
def compute_score(subtopics, priorities):
score = 0.0
for subtopic in subtopics:
score += priorities[subtopic]
return score
def idealize(topic, qrels, run):
rank = {}
for i in range(len(run)):
rank[run[i]] = i
subtopics = set()
for docno in qrels:
subtopics |= qrels[docno]
count = {}
available = {}
for subtopic in subtopics:
count[subtopic] = 0
available[subtopic] = 0
for docno in qrels:
for subtopic in qrels[docno]:
available[subtopic] += 1
ideal = []
included = set()
remaining = []
for docno in qrels:
remaining.append(docno)
while len(ideal) < len(qrels):
remaining.sort(
key=lambda docno: rank[docno] if docno in rank else len(run))
priorities = prioritize(count, available)
scores = {}
for docno in remaining:
scores[docno] = compute_score(qrels[docno], priorities)
remaining.sort(key=lambda docno: scores[docno], reverse=True)
best = remaining[0]
remaining = remaining[1:]
ideal.append(best)
for subtopic in qrels[best]:
count[subtopic] += 1
return ideal
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-p', type=float, default=P, help='persistence')
parser.add_argument('qrels', type=str, help='TREC-style qrels')
parser.add_argument('run', type=str, help='TREC-style run')
args = parser.parse_args()
if args.p < 0.01 or args.p > 0.99:
print('Value of p = ' + str(args.p) + ' out of range [0.01,0.99]',
file=sys.stderr)
sys.exit(0)
qrels = {}
with open(args.qrels) as qrelsf:
for line in qrelsf:
(topic, subtopic, docno, qrel) = line.rstrip().split()
qrel = float(qrel)
if qrel > 0.0:
if topic not in qrels:
qrels[topic] = {}
if docno not in qrels[topic]:
qrels[topic][docno] = set()
qrels[topic][docno].add(subtopic)
runid = ""
run = {}
scores = {}
with open(args.run) as runf:
for line in runf:
(topic, q0, docno, rank, score, runid) = line.rstrip().split()
if topic not in run:
run[topic] = []
scores[topic] = {}
run[topic].append(docno)
scores[topic][docno] = float(score)
for topic in run:
run[topic].sort()
run[topic].sort(key=lambda docno: scores[topic][docno], reverse=True)
ideal = {}
for topic in run:
if topic in qrels:
ideal[topic] = idealize(topic, qrels[topic], run[topic])
print('runid', 'topic', 'compatibility', sep=',')
count = 0
total = 0.0
for topic in run:
if topic in ideal:
score = rbo(run[topic], ideal[topic], args.p)
count += 1
total += score
print(runid, topic, score, sep=',')
if count > 0:
print(runid, 'average', total/count, sep=',')
else:
print(runid, 'average', 0.0, sep=',')