-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharguments.py
224 lines (179 loc) · 11.8 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os.path as osp
import const
from const import *
parser = argparse.ArgumentParser(description="")
parser.add_argument('--author_identifier', type=str,
choices=[const.AUTHOR, const.AUTHOR_FULLNAME],
default=const.AUTHOR,
help="Which fields to identify each user. `author` (the displayed name) is preferred since `author_fullname` is not available before 2021.")
parser.add_argument('--batch_size', type=int, default=256,
help="the batch size for models. Note that using a smaller batch size is preferred. Otherwise the performance will suffer.")
parser.add_argument('--c', type=float, default=1.,
help="The hyperparameter in the equation $\delta t^{thres} = \mu - c \sigma$.")
parser.add_argument('--mu', type=float, default=None,
help="The hyperparameter in the equation $\delta t^{thres} = \mu - c \sigma$.")
parser.add_argument('--sigma', type=float, default=None,
help="The hyperparameter in the equation $\delta t^{thres} = \mu - c \sigma$.")
parser.add_argument('--comment', type=str, default="",
help="Comment for each run. Useful for identifying each run on Tensorboard")
parser.add_argument('--data_dir', type=str, default="data",
help="Location to store the processed dataset")
parser.add_argument('--dataset_name', type=str, help="")
parser.add_argument('--demo', action='store_true', help="do demo")
parser.add_argument('--debug', action='store_true', help="do debugging")
parser.add_argument('--device', type=str, default='cuda:0',
help="Device to use. When using multi-gpu, this is the 'master' device where all operations are performed.")
parser.add_argument('--device2', type=str, default='cpu',
help="For Multi-GPU training")
parser.add_argument('--do_analysis', action='store_true',
help="Whether to perform analysis on the dataset")
parser.add_argument('--do_amp', action='store_true',
help="Whether to use AMP for mixed precision training")
parser.add_argument('--do_batch', action='store_true',
help="Whether to perform batch training in GCN, or perform batch operations in preprocessing / calculations")
parser.add_argument('--do_banned_subreddit_prediction', action='store_true',
help="Whether to perform banned subreddit prediction")
parser.add_argument('--do_crosspost', action='store_true',
help="Process crosspost data")
parser.add_argument('--do_filter', action='store_true',
help="Do we load the filtered URL DataFrame?")
parser.add_argument('--do_kdd', action='store_true',
help="Load the old data for KDD 2023 submission")
parser.add_argument('--do_process_urls', action='store_true',
help="Whether to process the URLs. If not specified, we assume the urls_RS_20XX-XX.pkl files are aleady processed. The URLs will be loaded from the processed files.")
parser.add_argument('--do_sanity_check', action='store_true',
help="Whether to perform sanity check on the dataset, e.g. overlapping items between train/test. This will make the program run slower.")
parser.add_argument('--do_static_modeling', action='store_true',
help="Whether to construct the session graph for subreddits")
parser.add_argument('--do_shard', action='store_true',
help="do embedding sharding and split the memory to multiple GPUs")
parser.add_argument('--do_test', action='store_true')
parser.add_argument('--do_val', action='store_true')
parser.add_argument('--do_weighted', action='store_true',
help="Construct weighted graph instead of multigraph for each graph snapshot")
parser.add_argument('--dropout', type=float, default=0.1,
help="Dropout rate (1 - keep probability).")
parser.add_argument('--delta_t_thres', type=float, default=None,
help="The cutoff time for constructing CIG in `Influence Graph Construction` of Section 3.2. You can either specify a value or calculate it by fitting a unimodal distribution. For the small dataset, it is ")
parser.add_argument('--embedding_dim', type=int, default=64,
help="the embedding size of model")
parser.add_argument('--embedding_dim_user', type=int, default=32,
help="The embedding size for the users")
parser.add_argument('--embedding_dim_resource', type=int, default=32,
help="The embedding size for the resource (e.g. video)")
parser.add_argument('--epochs', type=int, default=200,
help="Number of epochs to train.")
parser.add_argument('--eval_batch_size', type=int, default=256,
help="the batch size for models")
parser.add_argument('--eval_every', type=int, default=20,
help="How many epochs to perform evaluation?")
parser.add_argument('--eval_neg_sampling_ratio', type=int, default=100,
help="How many negative examples to sample for each positive example in val/test?")
parser.add_argument('--eval_embeds_every', type=int, default=-1,
help="How many epochs to evaluate embeddings using polarization?")
parser.add_argument('--evaluate_on_each_subset', type=bool, default=True,
help="If True, we will split the evaluation into cold-start and warm-start videos.")
parser.add_argument('--eval_sample_method', type=str,
choices=[RANDOM, PER_INTERACTION, EXCLUDE_POSITIVE],
default=EXCLUDE_POSITIVE,
help="Negative sampling method for evaluation dataset")
parser.add_argument('--full_dataset_name', type=str, default="60_months",
help="Name of the full dataset")
parser.add_argument('--gpus', type=str, default="0",
help="GPUs to use. If using 4 GPUs, type 0,1,2,3")
parser.add_argument('--generate_glove_embeds_for_videos', action='store_true',
help="Generate GloVe embeddings for video titles and descriptions")
parser.add_argument('--i_end', type=int, default=None,
help="Index of the end dataset.")
parser.add_argument('--i_start', type=int, default=0,
help="Index of the start dataset.")
parser.add_argument('--Ks', type=str, default="[1,3,5,10,20,50,100]",
help="K for NDCG@K")
parser.add_argument('--keep_embedding_on_cpu', action='store_true')
parser.add_argument('--load_checkpoint_from_epoch', type=int, default=-1,
help="If not 0, we will load the checkpoint of this epoch")
parser.add_argument('--loss', type=str, choices=[BPR, BCE], default=BPR,
help="Type of loss function")
parser.add_argument('--lr', type=float, default=1e-3, help="Learning rate")
parser.add_argument('--max_seq_length', type=int, default=128,
help="Maximum sequence length")
parser.add_argument('--message_dim', type=int, default=0,
help="If we consider message embedding in video-subreddit graph, set it to nonzero value")
parser.add_argument('--min_inters_author', type=int, default=1,
help="Minimum number of interactions for an author to be included in the dataset")
parser.add_argument('--min_inters_resource', type=int, default=3,
help="Minimum number of interactions for a URL/video to be included in the dataset")
parser.add_argument('--min_inters_subreddit', type=int, default=1,
help="Minimum number of interactions for a subreddit to be included in the dataset")
parser.add_argument('--min_subreddit_sequence_length', type=int, default=1,
help="Number of subreddits in a subreddit sequence to be considered in the GPT-2 model")
parser.add_argument('--model', type=str, default=None, help="Model Name")
parser.add_argument('--model_dir', type=str, default="models", help="")
parser.add_argument('--node_types', type=str,
choices=["v_subreddit", "author_subreddit",
"author_resource"], default="v_subreddit",
help="What types of node to include in the GCN bipartite graph?")
parser.add_argument('--num_negative_candidates', type=int, default=1000,
help="How many negative examples to sample for each video during the initial sampling?")
parser.add_argument('--num_neighbors', type=int, default=10,
help="Number of neighboring nodes in GNN")
parser.add_argument('--num_resource_prototypes', type=int, default=-1, help="")
parser.add_argument('--num_workers', type=int, default=1,
help="Number of workers for multiprocessing")
parser.add_argument('--output_dir', type=str, default="outputs",
help="Number of epochs to train.")
parser.add_argument('--resample_every', type=int, default=1,
help="Number of epochs to resample training dataset.")
parser.add_argument('--resource', type=str,
choices=[const.V, const.URL, const.MISINFORMATION],
default=V, help="Which resource we use as the src side")
parser.add_argument('--resource_embedding_dim', type=int, default=128,
help="the embedding size for resource (e.g. video / url) and channels")
parser.add_argument('--save_embed_every', type=int, default=10,
help="How many epochs to save embeddings for visualization?")
parser.add_argument('--save_model_every', type=int, default=20,
help="How many epochs to save the model weights?")
parser.add_argument('--path_resource_embeds', type=str, default=None,
help="Path to the resource embeddings")
parser.add_argument('--seed', type=int, default=42, help="Random seed.")
parser.add_argument('--session_graph_operator', type=str, default=const.APPNP,
choices=[const.APPNP, const.GATEDGRAPHCONV],
help="Graph operator in session graph.")
parser.add_argument('--session_split_method', type=str, default=const.SESSION,
choices=[const.SEQUENTIAL, const.SESSION, const.ALL],
help="Method to split a list of subreddits into different session graphs.")
parser.add_argument('--stats_every', type=int, default=int(10e4),
help="How many epochs to perform statistics? Now we temporarily ignore this.")
parser.add_argument('--task', type=str, default="", help="task_name")
parser.add_argument('--test_size', type=float, default=0.15, help="")
parser.add_argument('--train_neg_sampling_ratio', type=int, default=1,
help="How many negative examples to sample for each positive example in training?")
parser.add_argument('--train_sample_method', type=str,
choices=[RANDOM, PER_INTERACTION, EXCLUDE_POSITIVE],
default=RANDOM,
help="Negative sampling method for training dataset")
parser.add_argument('--val_size', type=float, default=0.15, help="")
parser.add_argument('--verbose', action='store_true', help="")
parser.add_argument('--video_channel_embed_aggregation_method', type=str,
choices=[const.ADD, const.MUL, const.CONCAT],
default=const.ADD,
help="")
args = parser.parse_args()
"""
Whether to use the author's (displayed name) or author_fullname (t2_*) field as the unique identifier for users. Note: we are not sure if the author field is unique for all users or can be modified by users.
"""
args.Ks = eval(args.Ks)
args.link_prediction_aggregation_method = const.ADD
args.scheduler_total_iters = 4
args.comment = 'INPAC'
args_static_modeling = {
'batch_size': 512,
'hidden_size': args.embedding_dim,
'lr': 0.001,
'lr_dc': 0.1,
'lr_dc_step': 3,
'l2': 1e-05,
'top_k': 20
}
args_static_modeling = argparse.Namespace(**args_static_modeling)