-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunited20.8通过权重减少过拟合.py
48 lines (38 loc) · 2.01 KB
/
united20.8通过权重减少过拟合.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#问题 : 减少过拟合
#解决方案: 惩罚网络参数的过程,也称为权重调节(weight regularization)
#加载库
import numpy as np #加载Numpy库能对机器学习中常用的数据结构-向量,矩阵,张量进行高效操作
from keras.datasets import imdb#从影评数据中加载数据和目标向量
from keras.preprocessing.text import Tokenizer#将影评数据转化为one-hot编码的特征向量
from keras import models #启动神经网络
from keras import layers#全连接层的参数设置
from keras import regularizers #惩罚神经网络的参数(权重)
#设置随机种子
np.random.seed(0)
#设置想要的特征数量
number_of_features = 1000
#加载IMDB 电影的数据和目标向量
(data_train,target_train),(data_test,target_test)=imdb.load_data(num_words=number_of_features)
#把IMDB数据转化为one-hot编码的特征矩阵
tokenizer = Tokenizer(num_words=number_of_features)
features_train = tokenizer.sequences_to_matrix(data_train,mode="binary")
features_test = tokenizer.sequences_to_matrix(data_test,mode="binary")
#启动神经网络
network =models.Sequential()
#添加使用ReLU激活函数的全连接层
network.add(layers.Dense(units=16, activation="relu", kernel_regularizer=regularizers.l2(0.01),input_shape=(number_of_features,)))
#添加使用ReLU激活函数的全连接层
network.add(layers.Dense(units=16,activation="relu", kernel_regularizer=regularizers.l2(0.01)))
#添加使用sigmoid激活函数的全连接层
network.add(layers.Dense(units=1,activation="sigmoid"))
#编译神经网络
network.compile(loss="binary_crossentropy",#均方误差
optimizer="rmsprop",
metrics=["accuracy"])
#训练神经网络
history = network.fit(features_train,
target_train,
epochs=3,
verbose=0,
batch_size=100,#每个批次的观察值数量
validation_data=(features_test,target_test))