-
Notifications
You must be signed in to change notification settings - Fork 103
/
solution.cpp
92 lines (73 loc) · 3.01 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*
SYCL Academy (c)
SYCL Academy is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-sa/4.0/>.
*/
#include <algorithm>
#include <sycl/sycl.hpp>
#include "../helpers.hpp"
class vector_add_first;
class vector_add_second;
// This function returns a vector of two (not necessarily distinct) devices,
// allowing computation to be split across said devices.
std::vector<sycl::device> get_two_devices() {
auto devs = sycl::device::get_devices();
if (devs.size() == 0) throw "No devices available";
if (devs.size() == 1) return {devs[0], devs[0]};
return {devs[0], devs[1]};
}
int main() {
constexpr size_t dataSize = 1024;
constexpr float ratio = 0.5f;
constexpr size_t dataSizeFirst = ratio * dataSize;
constexpr size_t dataSizeSecond = dataSize - dataSizeFirst;
float a[dataSize], b[dataSize], r[dataSize];
for (int i = 0; i < dataSize; ++i) {
a[i] = static_cast<float>(i);
b[i] = static_cast<float>(i);
r[i] = 0.0f;
}
try {
auto devs = get_two_devices();
auto Q1 = sycl::queue{devs[0]};
auto Q2 = sycl::queue{devs[1]}; // if only one device is found, both
// queues will use same device
std::cout << "Running on devices:" << std::endl;
std::cout << "1:\t" << Q1.get_device().get_info<sycl::info::device::name>()
<< std::endl;
std::cout << "2:\t" << Q2.get_device().get_info<sycl::info::device::name>()
<< std::endl;
auto bufFirstA = sycl::buffer{a, sycl::range{dataSizeFirst}};
auto bufFirstB = sycl::buffer{b, sycl::range{dataSizeFirst}};
auto bufFirstR = sycl::buffer{r, sycl::range{dataSizeFirst}};
auto bufSecondA =
sycl::buffer{a + dataSizeFirst, sycl::range{dataSizeSecond}};
auto bufSecondB =
sycl::buffer{b + dataSizeFirst, sycl::range{dataSizeSecond}};
auto bufSecondR =
sycl::buffer{r + dataSizeFirst, sycl::range{dataSizeSecond}};
Q1.submit([&](sycl::handler& cgh) {
sycl::accessor accA{bufFirstA, cgh, sycl::read_only};
sycl::accessor accB{bufFirstB, cgh, sycl::read_only};
sycl::accessor accR{bufFirstR, cgh, sycl::write_only};
cgh.parallel_for<vector_add_first>(
sycl::range{dataSizeFirst},
[=](sycl::id<1> idx) { accR[idx] = accA[idx] + accB[idx]; });
});
Q2.submit([&](sycl::handler& cgh) {
sycl::accessor accA{bufSecondA, cgh, sycl::read_only};
sycl::accessor accB{bufSecondB, cgh, sycl::read_only};
sycl::accessor accR{bufSecondR, cgh, sycl::write_only};
cgh.parallel_for<vector_add_second>(
sycl::range{dataSizeSecond},
[=](sycl::id<1> idx) { accR[idx] = accA[idx] + accB[idx]; });
});
Q1.wait_and_throw();
Q2.wait_and_throw();
} catch (const sycl::exception& e) {
std::cout << "Exception caught: " << e.what() << std::endl;
}
SYCLACADEMY_ASSERT_EQUAL(r, [](size_t i) { return i * 2.0f; });
}