diff --git a/complex/AbsCC.v b/complex/AbsCC.v index c434c0eaf..2480118c4 100644 --- a/complex/AbsCC.v +++ b/complex/AbsCC.v @@ -267,7 +267,7 @@ Qed. Lemma AbsCC_square_ap_zero : forall z : CC, z [#] [0] -> AbsCC z[^]2 [#] [0]. Proof. intros z H. - astepl (Re z[^]2[+]Im z[^]2). + stepl (Re z[^]2[+]Im z[^]2). apply (cc_inv_aid (Re z) (Im z) H). apply AbsCC_square_Re_Im with (x := Re z) (y := Im z). Qed. diff --git a/complex/NRootCC.v b/complex/NRootCC.v index e8104fc32..fab7a4f13 100644 --- a/complex/NRootCC.v +++ b/complex/NRootCC.v @@ -943,7 +943,7 @@ Proof. pattern n at 1 in |- *; replace n with (1 * n). apply degree_nexp. apply degree_x_. - replace (1 * n) with n; auto. + replace (1 * n) with n; [auto|..]. unfold mult in |- *. auto with arith. assumption. diff --git a/fta/KeyLemma.v b/fta/KeyLemma.v index 969262210..0f23790f3 100644 --- a/fta/KeyLemma.v +++ b/fta/KeyLemma.v @@ -164,7 +164,7 @@ Proof. apply less_leEq; auto. apply a_nonneg. apply H12. - replace (n - j) with (S (n - S j)); auto with arith. + replace (n - j) with (S (n - S j)); [auto with arith|]. rewrite minus_Sn_m; auto with arith. auto. rewrite <- H22. @@ -192,7 +192,7 @@ Proof. intros i H15 H16. elim (le_lt_eq_dec _ _ H15); intro H18. apply H12. - replace (n - j) with (S (n - S j)); auto with arith. + replace (n - j) with (S (n - S j)); [auto with arith|]. rewrite minus_Sn_m; auto with arith. auto. rewrite <- H18. diff --git a/metric2/FinEnum.v b/metric2/FinEnum.v index f460cff51..c3dbcd808 100644 --- a/metric2/FinEnum.v +++ b/metric2/FinEnum.v @@ -373,7 +373,7 @@ Proof. apply (msp_stable (msp X) (Zpos p # Pos.of_succ_nat (Init.Nat.pred (Pos.to_nat d)))). auto. apply ball_weak_le with (1 # P_of_succ_nat z); auto. simpl. - apply Zmult_le_compat; auto with *. + apply Zmult_le_compat; [..|auto with *]. apply Pos.le_1_l. simpl. assert (forall i j:nat, le i j -> Pos.of_succ_nat i <= Pos.of_succ_nat j)%positive. { intros. diff --git a/metrics/CPMSTheory.v b/metrics/CPMSTheory.v index 0ddead099..2b20a1899 100644 --- a/metrics/CPMSTheory.v +++ b/metrics/CPMSTheory.v @@ -682,7 +682,7 @@ Proof. astepl (OneR[*]one_div_succ (n + (n + (n + 0)) + 2)[+] (Two:IR)[*]one_div_succ (n + (n + (n + 0)) + 2)). astepl ((OneR[+]Two)[*]one_div_succ (n + (n + (n + 0)) + 2)). - astepl ((Three:IR)[*]one_div_succ (n + (n + (n + 0)) + 2)). + stepl ((Three:IR)[*]one_div_succ (n + (n + (n + 0)) + 2)). 2: apply mult_wdl. 2: rational. astepr ((Three:IR)[*]([1][/] Three[//]three_ap_zero IR)[*]one_div_succ n). diff --git a/metrics/ContFunctions.v b/metrics/ContFunctions.v index e4a3dd8cb..f452ab33f 100644 --- a/metrics/ContFunctions.v +++ b/metrics/ContFunctions.v @@ -146,7 +146,7 @@ Proof. apply shift_less_plus. apply minusOne_less. astepl (OneR[+]nexp IR p Two). - astepr (OneR[+]nring (power p 2)). + stepr (OneR[+]nring (power p 2)). apply plus_resp_eq. apply nexp_power. simpl in |- *. diff --git a/metrics/LipExt.v b/metrics/LipExt.v index 092312585..917de889c 100644 --- a/metrics/LipExt.v +++ b/metrics/LipExt.v @@ -121,7 +121,7 @@ nexp IR n ([1][/] (Two:IR)[//]H). Proof. intros. astepl ((zexp Two H k)[*](nexp IR (n + k) ([1][/] Two[//]H) )). - astepl ((zexp Two H k)[*](zexp Two H (- (n + k)%nat))). + stepl ((zexp Two H k)[*](zexp Two H (- (n + k)%nat))). astepr (zexp Two H (k + (- (n + k)%nat))). apply eq_symmetric. apply zexp_plus. diff --git a/ode/SimpleIntegration.v b/ode/SimpleIntegration.v index 86465b2c3..0c3ff254b 100644 --- a/ode/SimpleIntegration.v +++ b/ode/SimpleIntegration.v @@ -567,17 +567,17 @@ Section implements_abstract_interface. apply Qpos_nonzero. rewrite E. simpl. setoid_replace (wbints true #1) with (/ (1#wbints true)) by reflexivity. - field... split. discriminate. apply Qpos_nonzero. + field. split. discriminate. apply Qpos_nonzero. assert (Zpos j == (proj1_sig (ww false) / wbints false / proj1_sig x)) as jE. { apply (Qmult_injective_l (proj1_sig x)). apply Qpos_nonzero. rewrite F. simpl. setoid_replace (wbints false #1) with (/ (1#wbints false)) by reflexivity. - field... split. discriminate. apply Qpos_nonzero. } + field. split. discriminate. apply Qpos_nonzero. } assert (Zpos k == (proj1_sig totalw / w01ints / proj1_sig x)) as kE. { apply (Qmult_injective_l (proj1_sig x)). apply Qpos_nonzero. rewrite G. simpl. setoid_replace (w01ints #1) with (/ (1#w01ints)) by reflexivity. - field... split. discriminate. apply Qpos_nonzero. } + field. split. discriminate. apply Qpos_nonzero. } apply Qball_plus. (* left case: *) apply Σ_Qball_pos_bounds. diff --git a/reals/fast/Interval.v b/reals/fast/Interval.v index 02c45f2ed..915e3fa06 100644 --- a/reals/fast/Interval.v +++ b/reals/fast/Interval.v @@ -582,7 +582,7 @@ Proof. rewrite -> Hlr. split; simpl. clear - H. - apply Qle_trans with 0%Q; auto with *. + apply Qle_trans with 0%Q. apply (Qopp_le_compat 0), Qpos_nonneg. rewrite -> Qle_minus_iff in *. rewrite Qplus_0_r. diff --git a/transc/Exponential.v b/transc/Exponential.v index 9f1fdf09d..0f6bd4ad9 100644 --- a/transc/Exponential.v +++ b/transc/Exponential.v @@ -1324,7 +1324,8 @@ Proof. pose (G:=(([--][1][/]_[//]nringS_ap_zero IR n){**}([-C-][1]{-}FId){^}(S n))). assert (X0:Derivative (olor [0] Two) (pos_two IR) G (([-C-][1]{-}FId){^}n)). unfold G. - Derivative_Help; [|apply Derivative_scal;refine (Derivative_nth _ _ _ _ _ _);Deriv]. + eapply Derivative_wdr; simpl in |- *; + [|apply Derivative_scal;refine (Derivative_nth _ _ _ _ _ _);Deriv]. FEQ. repeat constructor. assert (X1:Continuous (olor [0] Two) (([-C-][1]{-}FId){^}n)). diff --git a/transc/MoreArcTan.v b/transc/MoreArcTan.v index 67b05e887..69e4e1dd0 100644 --- a/transc/MoreArcTan.v +++ b/transc/MoreArcTan.v @@ -624,7 +624,7 @@ Proof. intros n. rewrite plus_comm. simpl. - Derivative_Help; [|apply Derivative_scal;apply Derivative_nth;Deriv]. + Derivative_Help; [|apply Derivative_scal;apply Derivative_nth;Deriv..]. FEQ. Qed.