-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation.py
102 lines (80 loc) · 2.62 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from PIL import Image
import pandas as pd
import matplotlib.pyplot as plt
import random
def RandomCrop(img, jitter=0.3, target_shape=None):
oh = img.height
ow = img.width
dw = int(ow * jitter)
dh = int(oh * jitter)
pleft = random.randint(-dw, dw)
pright = random.randint(-dw, dw)
ptop = random.randint(-dh, dh)
pbot = random.randint(-dh, dh)
swidth = ow - pleft - pright # [ow-2*jitter*ow, ow+2*jitter*ow]
sheight = oh - ptop - pbot # [oh-2*jitter*oh, oh+2*jitter*oh]
# pleft + swidth - 1 [ow-3*jitter*ow+1, ow+3*jitter*ow+1]
# ptop + sheight - 1 [oh-3*jitter*oh+1, oh+3*jitter*oh+1]
cropped = img.crop((pleft, ptop, pleft + swidth - 1, ptop + sheight - 1))
if not target_shape:
img = cropped.resize((ow, oh))
else:
img = cropped.resize(target_shape)
return img
def Flipping(img, vertical=0, horizontal=0, random_flip=False):
if random_flip:
rand_hor = random.randint(1, 10000) % 2
rand_ver = random.randint(1, 10000) % 2
if rand_hor:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if random_flip:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
else:
if vertical:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
if horizontal:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
return img
def HSV(img, hue=None, sat=None, val=None):
def random_scale(x):
x = random.uniform(1, x)
if random.randint(1, 10000) % 2 == 0:
return x
return 1.0 / x
def change_hue(x):
x += hue * 255
if x > 255:
x -= 255
if x < 0:
x += 255
return x
img = img.convert('HSV')
cs = list(img.split())
if hue:
hue = random.uniform(1, hue)
cs[0] = cs[0].point(change_hue)
if sat:
sat = random_scale(sat)
cs[1] = cs[1].point(lambda i: i * sat)
if val:
val = random_scale(val)
cs[2] = cs[2].point(lambda i: i * val)
img = Image.merge(img.mode, tuple(cs))
img = img.convert('RGB')
return img
def Translation(img):
pass
def main():
img = Image.open('tong.jpg').convert('RGB')
plt.figure(num='Data Agumentation', figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title('Before')
plt.imshow(img)
plt.subplot(1, 2, 2)
plt.title('After')
# img = RandomCrop(img)
img = HSV(img, 0.1, 1.5, 1.5)
plt.imshow(img)
plt.show()
if __name__ == '__main__':
main()