diff --git a/docs/notes-r1cs.md b/docs/notes-r1cs.md index db48b539..767a0961 100644 --- a/docs/notes-r1cs.md +++ b/docs/notes-r1cs.md @@ -254,8 +254,7 @@ the proof would still work if \\({\mathbf{a}}\_{O}\\) was rearranged on the righ If we reorder terms, we get: \\[ -w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle -= +w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle = \langle \mathbf{a}\_L \circ \mathbf{a}\_R, \mathbf{y}^n \rangle - \langle \mathbf{a}\_O, \mathbf{y}^n \rangle + \langle \mathbf{w}\_L, \mathbf{a}\_L \rangle + @@ -266,8 +265,7 @@ w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle Merge the statements containing \\(\mathbf{a}\_O \\): \\[ -w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle -= +w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle = \langle \mathbf{a}\_L \circ \mathbf{a}\_R, \mathbf{y}^n \rangle + \langle \mathbf{a}\_L, \mathbf{w}\_L \rangle + \langle \mathbf{a}\_O, -\mathbf{y}^n + \mathbf{w}\_O \rangle + @@ -278,8 +276,7 @@ Rearrange \\(\langle \mathbf{a}\_L \circ \mathbf{a}\_R, \mathbf{y}^n \rangle\\) \\(\langle \mathbf{a}\_L, \mathbf{y}^n \circ \mathbf{a}\_R \rangle\\): \\[ -w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle -= +w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle = \langle \mathbf{a}\_L, \mathbf{y}^n \circ \mathbf{a}\_R \rangle + \langle \mathbf{a}\_L, \mathbf{w}\_L \rangle + \langle \mathbf{a}\_O, -\mathbf{y}^n + \mathbf{w}\_O \rangle + @@ -290,8 +287,7 @@ Multiply the \\( \langle \mathbf{a}\_R, \mathbf{w}\_R \rangle \\) term by \\(\mathbf{y}^n\\) one one side of the inner product and by \\(\mathbf{y}^{-n}\\) on the other side: \\[ -w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle -= +w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle = \langle \mathbf{a}\_L, \mathbf{y}^n \circ \mathbf{a}\_R \rangle + \langle \mathbf{a}\_L, \mathbf{w}\_L \rangle + \langle \mathbf{a}\_O, -\mathbf{y}^n + \mathbf{w}\_O \rangle + @@ -301,8 +297,7 @@ w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle Merge the statements containing \\(\mathbf{y}^n \circ \mathbf{a}\_R\\): \\[ -w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle -= +w\_c + \langle \mathbf{w}\_V, \mathbf{v} \rangle = \langle \mathbf{a}\_L + \mathbf{y}^{-n} \circ \mathbf{w}\_R, \mathbf{y}^n \circ \mathbf{a}\_R \rangle + \langle \mathbf{a}\_L, \mathbf{w}\_L \rangle + \langle \mathbf{a}\_O, -\mathbf{y}^n + \mathbf{w}\_O \rangle