forked from AutoGPTQ/AutoGPTQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneration_speed.py
326 lines (275 loc) · 11.5 KB
/
generation_speed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import json
import logging
import random
import time
from argparse import ArgumentParser
from itertools import chain
from typing import Dict, List, Optional
import torch
from datasets import Dataset
from tqdm import tqdm
from transformers import AutoTokenizer, GenerationConfig
from transformers.generation.logits_process import LogitsProcessor
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
logger = logging.getLogger(__name__)
random.seed(0)
class CustomizedMinNewTokensLogitsProcessor(LogitsProcessor):
def __init__(
self,
min_new_tokens: int = None,
eos_token_id: int = None,
):
self.eos_token_id = eos_token_id
self.min_new_tokens = min_new_tokens or 0
self.current_step = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
self.current_step += 1
if self._skip_process():
return scores
if any(each is not None for each in [self.eos_token_id]):
banned_mask = torch.zeros_like(scores).to(scores.device)
if self.eos_token_id and self.current_step <= self.min_new_tokens:
banned_mask = self._fill_banned_mask(input_ids, banned_mask, {1: [[self.eos_token_id]]})
scores = scores.masked_fill(banned_mask.bool(), -float("inf"))
return scores
def _skip_process(self):
if self.current_step > self.min_new_tokens:
return True
return False
@staticmethod
def _fill_banned_mask(
input_ids: torch.LongTensor,
banned_mask: torch.Tensor,
len2words_ids: Dict[int, List[List[int]]],
):
for token_len, token_ids in len2words_ids.items():
if token_len == 1:
banned_mask[..., list(chain(*token_ids))] = 1
elif input_ids.shape[-1] < token_len - 1:
continue
else:
token_ids = torch.LongTensor(token_ids).to(input_ids.device)
hit_masks = torch.all(
token_ids[..., :-1].unsqueeze(0).repeat(input_ids.shape[0], 1, 1)
== input_ids[..., -(token_ids.shape[-1] - 1) :].unsqueeze(1),
dim=-1,
)
for idx in range(hit_masks.shape[0]):
selected_token_ids = torch.masked_select(token_ids[..., -1], hit_masks[idx])
if len(selected_token_ids):
banned_mask[idx, selected_token_ids] = 1
return banned_mask
def load_data(data_path, tokenizer, n_samples, max_new_tokens):
with open(data_path, "r", encoding="utf-8") as f:
raw_data = json.load(f)
raw_data = random.sample(raw_data, k=min(n_samples, len(raw_data)))
def dummy_gen():
return raw_data
def tokenize(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
prompts = []
texts = []
input_ids = []
attention_mask = []
for istr, inp, opt in zip(instructions, inputs, outputs):
if inp:
prompt = f"Instruction:\n{istr}\nInput:\n{inp}\nOutput:\n"
text = prompt + opt
else:
prompt = f"Instruction:\n{istr}\nOutput:\n"
text = prompt + opt
if len(tokenizer(prompt)["input_ids"]) >= tokenizer.model_max_length - max_new_tokens:
continue
tokenized_data = tokenizer(text)
input_ids.append(tokenized_data["input_ids"][: tokenizer.model_max_length])
attention_mask.append(tokenized_data["attention_mask"][: tokenizer.model_max_length])
prompts.append(prompt)
texts.append(text)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"prompt": prompts,
}
dataset = Dataset.from_generator(dummy_gen)
dataset = dataset.map(
tokenize,
batched=True,
batch_size=len(dataset),
num_proc=1,
keep_in_memory=True,
load_from_cache_file=False,
remove_columns=["instruction", "input"],
)
dataset = dataset.to_list()
for sample in dataset:
sample["input_ids"] = torch.LongTensor(sample["input_ids"])
sample["attention_mask"] = torch.LongTensor(sample["attention_mask"])
return dataset
def load_model_tokenizer(
model_name_or_path: str,
tokenizer_name_or_path: Optional[str] = None,
from_pretrained: bool = False,
max_memory: Optional[dict] = None,
model_basename: Optional[str] = None,
quantize_config: Optional[str] = None,
trust_remote_code: bool = False,
use_triton: bool = False,
use_safetensors: bool = True,
use_fast_tokenizer: bool = False,
inject_fused_attention: bool = True,
inject_fused_mlp: bool = True,
disable_exllama: bool = False,
):
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=tokenizer_name_or_path or model_name_or_path,
use_fast=use_fast_tokenizer,
trust_remote_code=trust_remote_code,
)
if not tokenizer.pad_token_id:
tokenizer.pad_token_id = tokenizer.eos_token_id
if from_pretrained:
model = AutoGPTQForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_name_or_path,
quantize_config=BaseQuantizeConfig(),
max_memory=max_memory,
trust_remote_code=trust_remote_code,
)
else:
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
max_memory=max_memory,
low_cpu_mem_usage=True,
use_triton=use_triton,
inject_fused_attention=inject_fused_attention,
inject_fused_mlp=inject_fused_mlp,
use_cuda_fp16=True,
quantize_config=quantize_config,
model_basename=model_basename,
use_safetensors=use_safetensors,
trust_remote_code=trust_remote_code,
warmup_triton=False,
disable_exllama=disable_exllama,
)
return model, tokenizer
def benchmark_generation_speed(model, tokenizer, examples, generation_config):
generation_time_list = []
num_generated_tokens_list = []
progress_bar = tqdm(examples)
for example in progress_bar:
input_ids = example["input_ids"].to(model.device)
start = time.time()
outputs_ids = model.generate(
input_ids=input_ids.unsqueeze(0),
generation_config=generation_config,
logits_processor=[
CustomizedMinNewTokensLogitsProcessor(generation_config.max_new_tokens, tokenizer.eos_token_id)
],
)
end = time.time()
generation_time_list.append(end - start)
num_generated_tokens = 0
for output_ids in outputs_ids:
num_generated_tokens += len(
[token_id for token_id in output_ids[len(input_ids) :] if token_id != tokenizer.pad_token_id]
)
num_generated_tokens_list.append(num_generated_tokens)
progress_bar.set_postfix(
num_tokens=num_generated_tokens_list[-1],
time=generation_time_list[-1],
speed=f"{num_generated_tokens_list[-1] / generation_time_list[-1]:.4f}tokens/s",
)
total_tokens = sum(num_generated_tokens_list)
total_seconds = sum(generation_time_list)
logger.info(
f"generated {total_tokens} tokens using {total_seconds} seconds, "
f"generation speed: {total_tokens / total_seconds}tokens/s"
)
def main():
parser = ArgumentParser()
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--tokenizer_name_or_path", type=str, default=None)
parser.add_argument("--from_pretrained", action="store_true")
parser.add_argument("--model_basename", type=str, default=None)
parser.add_argument("--quantize_config_save_dir", type=str, default=None)
parser.add_argument("--trust_remote_code", action="store_true")
parser.add_argument("--use_triton", action="store_true")
parser.add_argument("--use_safetensors", action="store_true")
parser.add_argument("--use_fast_tokenizer", action="store_true")
parser.add_argument("--disable_exllama", action="store_true")
parser.add_argument("--no_inject_fused_attention", action="store_true")
parser.add_argument("--no_inject_fused_mlp", action="store_true")
parser.add_argument("--num_samples", type=int, default=10)
parser.add_argument("--per_gpu_max_memory", type=int, default=None)
parser.add_argument("--cpu_max_memory", type=int, default=None)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--do_sample", action="store_true")
parser.add_argument("--num_beams", type=int, default=1)
args = parser.parse_args()
max_memory = {}
if args.per_gpu_max_memory is not None and args.per_gpu_max_memory > 0:
if torch.cuda.is_available():
max_memory.update({i: f"{args.per_gpu_max_memory}GIB" for i in range(torch.cuda.device_count())})
if args.cpu_max_memory is not None and args.cpu_max_memory > 0 and max_memory:
max_memory["cpu"] = f"{args.cpu_max_memory}GIB"
if not max_memory:
max_memory = None
logger.info(f"max_memory: {max_memory}")
quantize_config = None
if args.quantize_config_save_dir:
quantize_config = BaseQuantizeConfig.from_pretrained(args.quantize_config_save_dir)
if args.use_safetensors:
logger.warning(
"The command --use_safetensors is deprecated and will be removed in the next release. It is now by default activated."
)
logger.info("loading model and tokenizer")
start = time.time()
model, tokenizer = load_model_tokenizer(
model_name_or_path=args.model_name_or_path,
tokenizer_name_or_path=args.tokenizer_name_or_path,
from_pretrained=args.from_pretrained,
max_memory=max_memory,
model_basename=args.model_basename,
quantize_config=quantize_config,
trust_remote_code=args.trust_remote_code,
use_triton=args.use_triton,
use_safetensors=True,
use_fast_tokenizer=args.use_fast_tokenizer,
inject_fused_attention=not args.no_inject_fused_attention,
inject_fused_mlp=not args.no_inject_fused_mlp,
disable_exllama=args.disable_exllama,
)
end = time.time()
logger.info(f"model and tokenizer loading time: {end - start:.4f}s")
logger.info(f"model quantized: {model.quantized}")
logger.info(f"quantize config: {model.quantize_config.to_dict()}")
logger.info(f"model device map: {model.hf_device_map}")
if args.use_triton:
logger.info("warmup triton, this may take a while.")
model.warmup_triton()
logger.info("loading data")
examples = load_data(
"../quantization/dataset/alpaca_data_cleaned.json",
tokenizer,
args.num_samples,
args.max_new_tokens,
)
generation_config = GenerationConfig(
num_beams=args.num_beams,
num_return_sequences=args.num_beams,
do_sample=args.do_sample,
min_new_tokens=args.max_new_tokens,
max_new_tokens=args.max_new_tokens,
pad_token_id=tokenizer.pad_token_id,
)
logger.info(f"generation config: {generation_config.to_dict()}")
logger.info("benchmark generation speed")
benchmark_generation_speed(model, tokenizer, examples, generation_config)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s",
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
)
main()