generated from databricks-industry-solutions/industry-solutions-blueprints
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathSample_05_AutoML_generated_notebook.py
561 lines (431 loc) · 25.7 KB
/
Sample_05_AutoML_generated_notebook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# Databricks notebook source
# MAGIC %md This notebook is available at https://github.com/databricks-industry-solutions/graph-analytics-churn-prediction.
# COMMAND ----------
# MAGIC %md
# MAGIC # XGBoost Classifier training
# MAGIC - This is an auto-generated notebook.
# MAGIC - To reproduce these results, attach this notebook to a cluster with runtime version **13.3.x-cpu-ml-scala2.12**, and rerun it.
# MAGIC - Compare trials in the [MLflow experiment](#mlflow/experiments/898470372133770).
# MAGIC - Clone this notebook into your project folder by selecting **File > Clone** in the notebook toolbar.
# COMMAND ----------
import mlflow
import databricks.automl_runtime
target_col = "churn"
# COMMAND ----------
# MAGIC %md
# MAGIC ## Load Data
# COMMAND ----------
import mlflow
import os
import uuid
import shutil
import pandas as pd
# Create temp directory to download input data from MLflow
input_temp_dir = os.path.join(os.environ["SPARK_LOCAL_DIRS"], "tmp", str(uuid.uuid4())[:8])
os.makedirs(input_temp_dir)
# Download the artifact and read it into a pandas DataFrame
input_data_path = mlflow.artifacts.download_artifacts(run_id="a9b370dc14dd4567b3b0ac88899f8a22", artifact_path="data", dst_path=input_temp_dir)
df_loaded = pd.read_parquet(os.path.join(input_data_path, "training_data"))
# Delete the temp data
shutil.rmtree(input_temp_dir)
# Preview data
df_loaded.head(5)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Select supported columns
# MAGIC Select only the columns that are supported. This allows us to train a model that can predict on a dataset that has extra columns that are not used in training.
# MAGIC `[]` are dropped in the pipelines. See the Alerts tab of the AutoML Experiment page for details on why these columns are dropped.
# COMMAND ----------
from databricks.automl_runtime.sklearn.column_selector import ColumnSelector
supported_cols = ["nghb_avg_total_charges", "online_security_no", "online_backup_yes", "phone_service_yes", "out_degree_ratio", "streaming_tv_yes", "dependents_no", "online_backup_no_internet_service", "comm_avg_tenure", "in_degree", "tech_support_no", "tenure", "senior_citizen_1", "multiple_lines_yes", "payment_method_credit_card__automatic_", "online_backup_no", "payment_method_mailed_check", "phone_service_no", "partner_no", "streaming_tv_no_internet_service", "paperless_billing_yes", "nghb_avg_monthly_charges", "streaming_movies_no_internet_service", "comm_dev_avg_total_charges", "internet_service_dsl", "payment_method_electronic_check", "degree", "multiple_lines_no_phone_service", "comm_dev_avg_monthly_charges", "comm_avg_total_charges", "tech_support_no_internet_service", "trian_count", "device_protection_no_internet_service", "contract_two_year", "device_protection_no", "payment_method_bank_transfer__automatic_", "device_protection_yes", "dependents_yes", "tech_support_yes", "streaming_movies_yes", "streaming_tv_no", "gender_female", "paperless_billing_no", "cc", "comm_size", "contract_month_to_month", "contract_one_year", "out_degree", "streaming_movies_no", "in_degree_ratio", "online_security_yes", "online_security_no_internet_service", "multiple_lines_no", "monthly_charges", "senior_citizen_0", "total_charges", "pagerank", "comm_dev_avg_tenure", "internet_service_fiber_optic", "nghb_avg_tenure", "gender_male", "internet_service_no", "partner_yes", "comm_avg_monthly_charges"]
col_selector = ColumnSelector(supported_cols)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Preprocessors
# COMMAND ----------
# MAGIC %md
# MAGIC ### Boolean columns
# MAGIC For each column, impute missing values and then convert into ones and zeros.
# COMMAND ----------
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import OneHotEncoder as SklearnOneHotEncoder
bool_imputers = []
bool_pipeline = Pipeline(steps=[
("cast_type", FunctionTransformer(lambda df: df.astype(object))),
("imputers", ColumnTransformer(bool_imputers, remainder="passthrough")),
("onehot", SklearnOneHotEncoder(handle_unknown="ignore", drop="first")),
])
bool_transformers = [("boolean", bool_pipeline, ["online_security_no", "online_backup_yes", "phone_service_yes", "streaming_tv_yes", "dependents_no", "online_backup_no_internet_service", "tech_support_no", "multiple_lines_yes", "payment_method_credit_card__automatic_", "senior_citizen_1", "online_backup_no", "phone_service_no", "payment_method_mailed_check", "partner_no", "streaming_tv_no_internet_service", "paperless_billing_yes", "streaming_movies_no_internet_service", "internet_service_dsl", "payment_method_electronic_check", "multiple_lines_no_phone_service", "contract_two_year", "device_protection_no", "tech_support_no_internet_service", "device_protection_no_internet_service", "payment_method_bank_transfer__automatic_", "dependents_yes", "device_protection_yes", "tech_support_yes", "streaming_movies_yes", "streaming_tv_no", "gender_female", "paperless_billing_no", "contract_month_to_month", "contract_one_year", "streaming_movies_no", "online_security_yes", "online_security_no_internet_service", "senior_citizen_0", "multiple_lines_no", "internet_service_fiber_optic", "gender_male", "internet_service_no", "partner_yes"])]
# COMMAND ----------
# MAGIC %md
# MAGIC ### Numerical columns
# MAGIC
# MAGIC Missing values for numerical columns are imputed with mean by default.
# COMMAND ----------
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer, StandardScaler
num_imputers = []
num_imputers.append(("impute_mean", SimpleImputer(), ["cc", "comm_avg_monthly_charges", "comm_avg_tenure", "comm_avg_total_charges", "comm_dev_avg_monthly_charges", "comm_dev_avg_tenure", "comm_dev_avg_total_charges", "comm_size", "contract_month_to_month", "contract_one_year", "contract_two_year", "degree", "dependents_no", "dependents_yes", "device_protection_no", "device_protection_no_internet_service", "device_protection_yes", "gender_female", "gender_male", "in_degree", "in_degree_ratio", "internet_service_dsl", "internet_service_fiber_optic", "internet_service_no", "monthly_charges", "multiple_lines_no", "multiple_lines_no_phone_service", "multiple_lines_yes", "nghb_avg_monthly_charges", "nghb_avg_tenure", "nghb_avg_total_charges", "online_backup_no", "online_backup_no_internet_service", "online_backup_yes", "online_security_no", "online_security_no_internet_service", "online_security_yes", "out_degree", "out_degree_ratio", "pagerank", "paperless_billing_no", "paperless_billing_yes", "partner_no", "partner_yes", "payment_method_bank_transfer__automatic_", "payment_method_credit_card__automatic_", "payment_method_electronic_check", "payment_method_mailed_check", "phone_service_no", "phone_service_yes", "senior_citizen_0", "senior_citizen_1", "streaming_movies_no", "streaming_movies_no_internet_service", "streaming_movies_yes", "streaming_tv_no", "streaming_tv_no_internet_service", "streaming_tv_yes", "tech_support_no", "tech_support_no_internet_service", "tech_support_yes", "tenure", "total_charges", "trian_count"]))
numerical_pipeline = Pipeline(steps=[
("converter", FunctionTransformer(lambda df: df.apply(pd.to_numeric, errors='coerce'))),
("imputers", ColumnTransformer(num_imputers)),
("standardizer", StandardScaler()),
])
numerical_transformers = [("numerical", numerical_pipeline, ["nghb_avg_total_charges", "online_security_no", "online_backup_yes", "phone_service_yes", "out_degree_ratio", "streaming_tv_yes", "dependents_no", "online_backup_no_internet_service", "in_degree", "tech_support_no", "comm_avg_tenure", "tenure", "payment_method_credit_card__automatic_", "multiple_lines_yes", "senior_citizen_1", "phone_service_no", "payment_method_mailed_check", "online_backup_no", "partner_no", "streaming_tv_no_internet_service", "paperless_billing_yes", "nghb_avg_monthly_charges", "streaming_movies_no_internet_service", "comm_dev_avg_total_charges", "internet_service_dsl", "payment_method_electronic_check", "degree", "multiple_lines_no_phone_service", "comm_dev_avg_monthly_charges", "comm_avg_total_charges", "trian_count", "tech_support_no_internet_service", "device_protection_no_internet_service", "contract_two_year", "device_protection_no", "payment_method_bank_transfer__automatic_", "device_protection_yes", "dependents_yes", "tech_support_yes", "streaming_movies_yes", "streaming_tv_no", "gender_female", "paperless_billing_no", "cc", "comm_size", "contract_month_to_month", "out_degree", "contract_one_year", "streaming_movies_no", "in_degree_ratio", "online_security_yes", "online_security_no_internet_service", "monthly_charges", "multiple_lines_no", "senior_citizen_0", "total_charges", "pagerank", "comm_dev_avg_tenure", "internet_service_fiber_optic", "nghb_avg_tenure", "gender_male", "internet_service_no", "partner_yes", "comm_avg_monthly_charges"])]
# COMMAND ----------
# MAGIC %md
# MAGIC ### Categorical columns
# COMMAND ----------
# MAGIC %md
# MAGIC #### Low-cardinality categoricals
# MAGIC Convert each low-cardinality categorical column into multiple binary columns through one-hot encoding.
# MAGIC For each input categorical column (string or numeric), the number of output columns is equal to the number of unique values in the input column.
# COMMAND ----------
from databricks.automl_runtime.sklearn import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
one_hot_imputers = []
one_hot_pipeline = Pipeline(steps=[
("imputers", ColumnTransformer(one_hot_imputers, remainder="passthrough")),
("one_hot_encoder", OneHotEncoder(handle_unknown="indicator")),
])
categorical_one_hot_transformers = [("onehot", one_hot_pipeline, ["comm_size"])]
# COMMAND ----------
from sklearn.compose import ColumnTransformer
transformers = bool_transformers + numerical_transformers + categorical_one_hot_transformers
preprocessor = ColumnTransformer(transformers, remainder="passthrough", sparse_threshold=0)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Train - Validation - Test Split
# MAGIC The input data is split by AutoML into 3 sets:
# MAGIC - Train (60% of the dataset used to train the model)
# MAGIC - Validation (20% of the dataset used to tune the hyperparameters of the model)
# MAGIC - Test (20% of the dataset used to report the true performance of the model on an unseen dataset)
# MAGIC
# MAGIC `_automl_split_col_0000` contains the information of which set a given row belongs to.
# MAGIC We use this column to split the dataset into the above 3 sets.
# MAGIC The column should not be used for training so it is dropped after split is done.
# COMMAND ----------
# AutoML completed train - validation - test split internally and used _automl_split_col_0000 to specify the set
split_train_df = df_loaded.loc[df_loaded._automl_split_col_0000 == "train"]
split_val_df = df_loaded.loc[df_loaded._automl_split_col_0000 == "val"]
split_test_df = df_loaded.loc[df_loaded._automl_split_col_0000 == "test"]
# Separate target column from features and drop _automl_split_col_0000
X_train = split_train_df.drop([target_col, "_automl_split_col_0000"], axis=1)
y_train = split_train_df[target_col]
X_val = split_val_df.drop([target_col, "_automl_split_col_0000"], axis=1)
y_val = split_val_df[target_col]
X_test = split_test_df.drop([target_col, "_automl_split_col_0000"], axis=1)
y_test = split_test_df[target_col]
# COMMAND ----------
# MAGIC %md
# MAGIC ## Train classification model
# MAGIC - Log relevant metrics to MLflow to track runs
# MAGIC - All the runs are logged under [this MLflow experiment](#mlflow/experiments/898470372133770)
# MAGIC - Change the model parameters and re-run the training cell to log a different trial to the MLflow experiment
# MAGIC - To view the full list of tunable hyperparameters, check the output of the cell below
# COMMAND ----------
from xgboost import XGBClassifier
help(XGBClassifier)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Define the objective function
# MAGIC The objective function used to find optimal hyperparameters. By default, this notebook only runs
# MAGIC this function once (`max_evals=1` in the `hyperopt.fmin` invocation) with fixed hyperparameters, but
# MAGIC hyperparameters can be tuned by modifying `space`, defined below. `hyperopt.fmin` will then use this
# MAGIC function's return value to search the space to minimize the loss.
# COMMAND ----------
import mlflow
from mlflow.models import Model, infer_signature, ModelSignature
from mlflow.pyfunc import PyFuncModel
from mlflow import pyfunc
import sklearn
from sklearn import set_config
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
from databricks.automl_runtime.sklearn import TransformedTargetClassifier
from hyperopt import hp, tpe, fmin, STATUS_OK, Trials
# Create a separate pipeline to transform the validation dataset. This is used for early stopping.
mlflow.sklearn.autolog(disable=True)
pipeline_val = Pipeline([
("column_selector", col_selector),
("preprocessor", preprocessor),
])
pipeline_val.fit(X_train, y_train)
X_val_processed = pipeline_val.transform(X_val)
label_encoder_val = LabelEncoder()
label_encoder_val.fit(y_train)
y_val_processed = label_encoder_val.transform(y_val)
def objective(params):
with mlflow.start_run(experiment_id="898470372133770") as mlflow_run:
xgbc_classifier = TransformedTargetClassifier(
classifier=XGBClassifier(**params),
transformer=LabelEncoder() # XGBClassifier requires the target values to be integers between 0 and n_class-1
)
model = Pipeline([
("column_selector", col_selector),
("preprocessor", preprocessor),
("classifier", xgbc_classifier),
])
# Enable automatic logging of input samples, metrics, parameters, and models
mlflow.sklearn.autolog(
log_input_examples=True,
silent=True)
model.fit(X_train, y_train, classifier__early_stopping_rounds=5, classifier__verbose=False, classifier__eval_set=[(X_val_processed,y_val_processed)])
# Log metrics for the training set
mlflow_model = Model()
pyfunc.add_to_model(mlflow_model, loader_module="mlflow.sklearn")
pyfunc_model = PyFuncModel(model_meta=mlflow_model, model_impl=model)
training_eval_result = mlflow.evaluate(
model=pyfunc_model,
data=X_train.assign(**{str(target_col):y_train}),
targets=target_col,
model_type="classifier",
evaluator_config = {"log_model_explainability": False,
"metric_prefix": "training_" , "pos_label": 1 }
)
xgbc_training_metrics = training_eval_result.metrics
# Log metrics for the validation set
val_eval_result = mlflow.evaluate(
model=pyfunc_model,
data=X_val.assign(**{str(target_col):y_val}),
targets=target_col,
model_type="classifier",
evaluator_config = {"log_model_explainability": False,
"metric_prefix": "val_" , "pos_label": 1 }
)
xgbc_val_metrics = val_eval_result.metrics
# Log metrics for the test set
test_eval_result = mlflow.evaluate(
model=pyfunc_model,
data=X_test.assign(**{str(target_col):y_test}),
targets=target_col,
model_type="classifier",
evaluator_config = {"log_model_explainability": False,
"metric_prefix": "test_" , "pos_label": 1 }
)
xgbc_test_metrics = test_eval_result.metrics
loss = -xgbc_val_metrics["val_roc_auc"]
# Truncate metric key names so they can be displayed together
xgbc_val_metrics = {k.replace("val_", ""): v for k, v in xgbc_val_metrics.items()}
xgbc_test_metrics = {k.replace("test_", ""): v for k, v in xgbc_test_metrics.items()}
return {
"loss": loss,
"status": STATUS_OK,
"val_metrics": xgbc_val_metrics,
"test_metrics": xgbc_test_metrics,
"model": model,
"run": mlflow_run,
}
# COMMAND ----------
# MAGIC %md
# MAGIC ### Configure the hyperparameter search space
# MAGIC Configure the search space of parameters. Parameters below are all constant expressions but can be
# MAGIC modified to widen the search space. For example, when training a decision tree classifier, to allow
# MAGIC the maximum tree depth to be either 2 or 3, set the key of 'max_depth' to
# MAGIC `hp.choice('max_depth', [2, 3])`. Be sure to also increase `max_evals` in the `fmin` call below.
# MAGIC
# MAGIC See https://docs.databricks.com/applications/machine-learning/automl-hyperparam-tuning/index.html
# MAGIC for more information on hyperparameter tuning as well as
# MAGIC http://hyperopt.github.io/hyperopt/getting-started/search_spaces/ for documentation on supported
# MAGIC search expressions.
# MAGIC
# MAGIC For documentation on parameters used by the model in use, please see:
# MAGIC https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
# MAGIC
# MAGIC NOTE: The above URL points to a stable version of the documentation corresponding to the last
# MAGIC released version of the package. The documentation may differ slightly for the package version
# MAGIC used by this notebook.
# COMMAND ----------
space = {
"colsample_bytree": 0.29914794927133104,
"learning_rate": 0.06689877153734992,
"max_depth": 4,
"min_child_weight": 19,
"n_estimators": 256,
"n_jobs": 100,
"subsample": 0.3799214775881078,
"verbosity": 0,
"random_state": 495337292,
}
# COMMAND ----------
# MAGIC %md
# MAGIC ### Run trials
# MAGIC When widening the search space and training multiple models, switch to `SparkTrials` to parallelize
# MAGIC training on Spark:
# MAGIC ```
# MAGIC from hyperopt import SparkTrials
# MAGIC trials = SparkTrials()
# MAGIC ```
# MAGIC
# MAGIC NOTE: While `Trials` starts an MLFlow run for each set of hyperparameters, `SparkTrials` only starts
# MAGIC one top-level run; it will start a subrun for each set of hyperparameters.
# MAGIC
# MAGIC See http://hyperopt.github.io/hyperopt/scaleout/spark/ for more info.
# COMMAND ----------
trials = Trials()
fmin(objective,
space=space,
algo=tpe.suggest,
max_evals=1, # Increase this when widening the hyperparameter search space.
trials=trials)
best_result = trials.best_trial["result"]
model = best_result["model"]
mlflow_run = best_result["run"]
display(
pd.DataFrame(
[best_result["val_metrics"], best_result["test_metrics"]],
index=["validation", "test"]))
set_config(display="diagram")
model
# COMMAND ----------
# MAGIC %md
# MAGIC ### Patch pandas version in logged model
# MAGIC
# MAGIC Ensures that model serving uses the same version of pandas that was used to train the model.
# COMMAND ----------
import mlflow
import os
import shutil
import tempfile
import yaml
run_id = mlflow_run.info.run_id
# Set up a local dir for downloading the artifacts.
tmp_dir = str(tempfile.TemporaryDirectory())
os.makedirs(tmp_dir)
client = mlflow.tracking.MlflowClient()
# Fix conda.yaml
conda_file_path = mlflow.artifacts.download_artifacts(artifact_uri=f"runs:/{run_id}/model/conda.yaml", dst_path=tmp_dir)
with open(conda_file_path) as f:
conda_libs = yaml.load(f, Loader=yaml.FullLoader)
pandas_lib_exists = any([lib.startswith("pandas==") for lib in conda_libs["dependencies"][-1]["pip"]])
if not pandas_lib_exists:
print("Adding pandas dependency to conda.yaml")
conda_libs["dependencies"][-1]["pip"].append(f"pandas=={pd.__version__}")
with open(f"{tmp_dir}/conda.yaml", "w") as f:
f.write(yaml.dump(conda_libs))
client.log_artifact(run_id=run_id, local_path=conda_file_path, artifact_path="model")
# Fix requirements.txt
venv_file_path = mlflow.artifacts.download_artifacts(artifact_uri=f"runs:/{run_id}/model/requirements.txt", dst_path=tmp_dir)
with open(venv_file_path) as f:
venv_libs = f.readlines()
venv_libs = [lib.strip() for lib in venv_libs]
pandas_lib_exists = any([lib.startswith("pandas==") for lib in venv_libs])
if not pandas_lib_exists:
print("Adding pandas dependency to requirements.txt")
venv_libs.append(f"pandas=={pd.__version__}")
with open(f"{tmp_dir}/requirements.txt", "w") as f:
f.write("\n".join(venv_libs))
client.log_artifact(run_id=run_id, local_path=venv_file_path, artifact_path="model")
shutil.rmtree(tmp_dir)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Feature importance
# MAGIC
# MAGIC SHAP is a game-theoretic approach to explain machine learning models, providing a summary plot
# MAGIC of the relationship between features and model output. Features are ranked in descending order of
# MAGIC importance, and impact/color describe the correlation between the feature and the target variable.
# MAGIC - Generating SHAP feature importance is a very memory intensive operation, so to ensure that AutoML can run trials without
# MAGIC running out of memory, we disable SHAP by default.<br />
# MAGIC You can set the flag defined below to `shap_enabled = True` and re-run this notebook to see the SHAP plots.
# MAGIC - To reduce the computational overhead of each trial, a single example is sampled from the validation set to explain.<br />
# MAGIC For more thorough results, increase the sample size of explanations, or provide your own examples to explain.
# MAGIC - SHAP cannot explain models using data with nulls; if your dataset has any, both the background data and
# MAGIC examples to explain will be imputed using the mode (most frequent values). This affects the computed
# MAGIC SHAP values, as the imputed samples may not match the actual data distribution.
# MAGIC
# MAGIC For more information on how to read Shapley values, see the [SHAP documentation](https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html).
# COMMAND ----------
# Set this flag to True and re-run the notebook to see the SHAP plots
shap_enabled = False
# COMMAND ----------
if shap_enabled:
mlflow.autolog(disable=True)
mlflow.sklearn.autolog(disable=True)
from shap import KernelExplainer, summary_plot
# Sample background data for SHAP Explainer. Increase the sample size to reduce variance.
train_sample = X_train.sample(n=min(100, X_train.shape[0]), random_state=495337292)
# Sample some rows from the validation set to explain. Increase the sample size for more thorough results.
example = X_val.sample(n=min(100, X_val.shape[0]), random_state=495337292)
# Use Kernel SHAP to explain feature importance on the sampled rows from the validation set.
predict = lambda x: model.predict(pd.DataFrame(x, columns=X_train.columns))
explainer = KernelExplainer(predict, train_sample, link="identity")
shap_values = explainer.shap_values(example, l1_reg=False, nsamples=500)
summary_plot(shap_values, example, class_names=model.classes_)
# COMMAND ----------
# MAGIC %md
# MAGIC ## Inference
# MAGIC [The MLflow Model Registry](https://docs.databricks.com/applications/mlflow/model-registry.html) is a collaborative hub where teams can share ML models, work together from experimentation to online testing and production, integrate with approval and governance workflows, and monitor ML deployments and their performance. The snippets below show how to add the model trained in this notebook to the model registry and to retrieve it later for inference.
# MAGIC
# MAGIC > **NOTE:** The `model_uri` for the model already trained in this notebook can be found in the cell below
# MAGIC
# MAGIC ### Register to Model Registry
# MAGIC ```
# MAGIC model_name = "Example"
# MAGIC
# MAGIC model_uri = f"runs:/{ mlflow_run.info.run_id }/model"
# MAGIC registered_model_version = mlflow.register_model(model_uri, model_name)
# MAGIC ```
# MAGIC
# MAGIC ### Load from Model Registry
# MAGIC ```
# MAGIC model_name = "Example"
# MAGIC model_version = registered_model_version.version
# MAGIC
# MAGIC model_uri=f"models:/{model_name}/{model_version}"
# MAGIC model = mlflow.pyfunc.load_model(model_uri=model_uri)
# MAGIC model.predict(input_X)
# MAGIC ```
# MAGIC
# MAGIC ### Load model without registering
# MAGIC ```
# MAGIC model_uri = f"runs:/{ mlflow_run.info.run_id }/model"
# MAGIC
# MAGIC model = mlflow.pyfunc.load_model(model_uri=model_uri)
# MAGIC model.predict(input_X)
# MAGIC ```
# COMMAND ----------
# model_uri for the generated model
print(f"runs:/{ mlflow_run.info.run_id }/model")
# COMMAND ----------
# MAGIC %md
# MAGIC ## Confusion matrix, ROC and Precision-Recall curves for validation data
# MAGIC
# MAGIC We show the confusion matrix, ROC and Precision-Recall curves of the model on the validation data.
# MAGIC
# MAGIC For the plots evaluated on the training and the test data, check the artifacts on the MLflow run page.
# COMMAND ----------
# Click the link to see the MLflow run page
displayHTML(f"<a href=#mlflow/experiments/898470372133770/runs/{ mlflow_run.info.run_id }/artifactPath/model> Link to model run page </a>")
# COMMAND ----------
import uuid
from IPython.display import Image
# Create temp directory to download MLflow model artifact
eval_temp_dir = os.path.join(os.environ["SPARK_LOCAL_DIRS"], "tmp", str(uuid.uuid4())[:8])
os.makedirs(eval_temp_dir, exist_ok=True)
# Download the artifact
eval_path = mlflow.artifacts.download_artifacts(run_id=mlflow_run.info.run_id, dst_path=eval_temp_dir)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Confusion matrix for validation dataset
# COMMAND ----------
eval_confusion_matrix_path = os.path.join(eval_path, "val_confusion_matrix.png")
display(Image(filename=eval_confusion_matrix_path))
# COMMAND ----------
# MAGIC %md
# MAGIC ### ROC curve for validation dataset
# COMMAND ----------
eval_roc_curve_path = os.path.join(eval_path, "val_roc_curve_plot.png")
display(Image(filename=eval_roc_curve_path))
# COMMAND ----------
# MAGIC %md
# MAGIC ### Precision-Recall curve for validation dataset
# COMMAND ----------
eval_pr_curve_path = os.path.join(eval_path, "val_precision_recall_curve_plot.png")
display(Image(filename=eval_pr_curve_path))