forked from yxhuang7538/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvit_model.py
267 lines (228 loc) · 9.71 KB
/
vit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# 创建vit模型
from functools import partial
from collections import OrderedDict
import torch
import torch.nn as nn
class PatchEmbed(nn.Module):
# 将2维图像转化为patch编码
# 224x224x3-->((224/16)^2)x(16x16x3)-->196x768
def __init__(self,
img_size=224,
patch_size=16,
in_c=3,
embed_dim=768,
norm_layer=None):
super().__init__()
img_size = (img_size, img_size)
patch_size = (patch_size, patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) # 14 x 14
self.num_patches = self.grid_size[0] * self.grid_size[1] # 总共被分割为了多少个patch
self.embed_dim = self.patch_size[0] * self.patch_size[1] # 编码长度 16x16
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
# proj : [B, 3, 224, 224] -> [B, 16x16x3, 14, 14]
# flatten: [B, 16x16x3, 14, 14] -> [B, 16x16x3, 14x14]
# transpose: [B, 16x16x3, 14x14] -> [B, 14x14, 16x16x3]
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
return x
def _init_vit_weights(m):
"""
ViT模型权重初始化
:param m: module
"""
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.zeros_(m.bias)
nn.init.ones_(m.weight)
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_ratio=0.,
attn_drop_ratio=0.,
drop_out_ratio=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
# 整体结构顺序
# ->norm1->Multi-Head-Attention->Dropout->norm2->MLP->Dropout->
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
self.drop_out = nn.Dropout(p=drop_out_ratio)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = MlP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
def forward(self, x):
x = x + self.drop_out(self.attn(self.norm1(x)))
x = x + self.drop_out(self.mlp(self.norm2(x)))
return x
class Attention(nn.Module):
def __init__(self,
dim, # 输入token的dim
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop_ratio=0.,
proj_drop_ratio=0.):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads # 分给多个头
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_ratio)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop_ratio)
def forward(self, x):
# [batch_size, num_patches + 1, total_embed_dim]
B, N, C = x.shape
# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
# @: 矩阵乘法 -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# @: 矩阵乘法 -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
# reshape: -> [batch_size, num_patches + 1, total_embed_dim]
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MlP(nn.Module):
"""
MLP结构
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class VisionTransformer(nn.Module):
# vit结构整体设计
def __init__(self,
img_size=224,
patch_size=16,
in_c=3,
num_classes=6,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
representation_size=None,
drop_ratio=0,
attn_drop_ratio=0,
embed_layer=PatchEmbed):
'''
参数说明:
img_size : 输入图片大小
patch_size : 分割的patch大小
in_c : 输入通道数
num_classes : 类别数量
embed_dim : 编码维度
depth : tf的深度
num_heads : 注意力头的数量
mlp_ratio : MLP模块中的膨胀系数
qkv_bias : 计算qkv时考虑偏置bias
qk_scale : 如果设置了将取代计算qk分数时分母位置的放缩系数
representation_size : 如果设置则将启用并设置pre-logits层为此值(预先表征)
drop_ratio : dropout 概率
attn_drop_ratio : 注意力层的dropout概率
embed_layer : patch的编码层,将patch映射到一维空间中
'''
super(VisionTransformer, self).__init__()
self.num_classes = num_classes
self.embed_dim = embed_dim
self.num_features = embed_dim
self.num_tokens = 1 # 需要多添加的一个类别token
norm_layer = partial(nn.LayerNorm, eps=1e-6) # 若无特殊正则化层,则会选择nn.LayerNorm
act_layer = nn.GELU # 若未传入激活层则用nn.GELU
# 224x224x3-->((224/16)^2)x(16x16x3)-->196x768
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size,
in_c=in_c, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches # patch的个数
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # 1x1x768
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) # 1x(14x14 + 1)x768
self.pos_drop = nn.Dropout(p=drop_ratio)
# depth个encoder进行堆叠
self.blocks = nn.Sequential(*[
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio,
norm_layer=norm_layer, act_layer=act_layer)
for _ in range(depth)
])
self.norm = norm_layer(embed_dim)
# 预表征层
if representation_size:
self.has_logits = True
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
("fc", nn.Linear(embed_dim, representation_size)),
("act", nn.Tanh())
]))
else:
self.has_logits = False
self.pre_logits = nn.Identity()
# 分类头
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# 初始化权重
nn.init.trunc_normal_(self.pos_embed, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
self.apply(_init_vit_weights)
def forward(self, x):
# [B, C, H, W] -> [B, num_patches, embed_dim]
x = self.patch_embed(x) # [B, 196, 768]
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # [1, 1, 768] -> [B, 1, 768]
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
x = self.pos_drop(x + self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
x = self.pre_logits(x[:, 0])
x = self.head(x)
return x
if __name__ == '__main__':
model = VisionTransformer(img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
representation_size=None,
num_classes=5)
print(model)