-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstrainedSubsequence.txt
32 lines (29 loc) · 1.06 KB
/
constrainedSubsequence.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1425. Constrained Subsequence Sum
Given an integer array nums and an integer k,
return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence,
nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied.
A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array,
leaving the remaining elements in their original order.
class Solution {
public:
int constrainedSubsetSum(vector<int>& nums, int k) {
int n = nums.size();
vector<int> dp(n);
deque<int> dq;
int ret = INT_MIN;
dp[0] = nums[0];
ret = max(ret, dp[0]);
dq.push_back(0);
for(int i = 1; i < nums.size(); i++) {
dp[i] = max(0, dp[dq.front()]) + nums[i];
ret = max(ret, dp[i]);
while(!dq.empty() and dp[dq.back()] <= dp[i]) {
dq.pop_back();
}
dq.push_back(i);
if(dq.front() == i - k)
dq.pop_front();
}
return ret;
}
};