-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaxProduct.txt
43 lines (39 loc) · 1.48 KB
/
maxProduct.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
2002. Maximum Product of the Length of Two Palindromic Subsequences
Given a string s, find two disjoint palindromic subsequences of s such that the product of their lengths is maximized.
The two subsequences are disjoint if they do not both pick a character at the same index.
Return the maximum possible product of the lengths of the two palindromic subsequences.
A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order
of the remaining characters.
A string is palindromic if it reads the same forward and backward.
class Solution {
public:
int lps(string &s) {
int length = s.length();
string s1 = s;
string s2 = s;
reverse(s2.begin(),s2.end());
int dp[s.length()+1][s.length()+1];
memset(dp,0,sizeof(dp));
for(int i = 1 ; i <= length ; i++){
for(int j = 1 ; j <= length ; j++){
dp[i][j] = (s1[i-1] == s2[j-1])? 1+dp[i-1][j-1] : max(dp[i][j-1],dp[i-1][j]);
}
}
return dp[length][length];
}
int maxProduct(string s){
int res = 0;
int len = s.length();
for(int i = 1 ; i < (1<<len)-1; i++){
string s1 = "", s2="";
for(int j = 0 ; j < len ; j++){
if(i&(1<<j)){
s1.push_back(s[j]);
}
else s2.push_back(s[j]);
}
res = max(res,lps(s1)*lps(s2));
}
return res;
}
};