-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathinference.py
135 lines (112 loc) · 4.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import os
import pdb
import pickle
from src.biosyn import (
DictionaryDataset,
BioSyn,
TextPreprocess
)
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='BioSyn Inference')
# Required
parser.add_argument('--mention', type=str, required=True, help='mention to normalize')
parser.add_argument('--model_name_or_path', required=True, help='Directory for model')
# Settings
parser.add_argument('--show_embeddings', action="store_true")
parser.add_argument('--show_predictions', action="store_true")
parser.add_argument('--dictionary_path', type=str, default=None, help='dictionary path')
parser.add_argument('--use_cuda', action="store_true")
args = parser.parse_args()
return args
def cache_or_load_dictionary(biosyn, model_name_or_path, dictionary_path):
dictionary_name = os.path.splitext(os.path.basename(args.dictionary_path))[0]
cached_dictionary_path = os.path.join(
'./tmp',
f"cached_{model_name_or_path.split('/')[-1]}_{dictionary_name}.pk"
)
# If exist, load the cached dictionary
if os.path.exists(cached_dictionary_path):
with open(cached_dictionary_path, 'rb') as fin:
cached_dictionary = pickle.load(fin)
print("Loaded dictionary from cached file {}".format(cached_dictionary_path))
dictionary, dict_sparse_embeds, dict_dense_embeds = (
cached_dictionary['dictionary'],
cached_dictionary['dict_sparse_embeds'],
cached_dictionary['dict_dense_embeds'],
)
else:
dictionary = DictionaryDataset(dictionary_path = dictionary_path).data
dictionary_names = dictionary[:,0]
dict_sparse_embeds = biosyn.embed_sparse(names=dictionary_names, show_progress=True)
dict_dense_embeds = biosyn.embed_dense(names=dictionary_names, show_progress=True)
cached_dictionary = {
'dictionary': dictionary,
'dict_sparse_embeds' : dict_sparse_embeds,
'dict_dense_embeds' : dict_dense_embeds
}
if not os.path.exists('./tmp'):
os.mkdir('./tmp')
with open(cached_dictionary_path, 'wb') as fin:
pickle.dump(cached_dictionary, fin)
print("Saving dictionary into cached file {}".format(cached_dictionary_path))
return dictionary, dict_sparse_embeds, dict_dense_embeds
def main(args):
# load biosyn model
biosyn = BioSyn(
max_length=25,
use_cuda=args.use_cuda
)
biosyn.load_model(model_name_or_path=args.model_name_or_path)
# preprocess mention
mention = TextPreprocess().run(args.mention)
# embed mention
mention_sparse_embeds = biosyn.embed_sparse(names=[mention])
mention_dense_embeds = biosyn.embed_dense(names=[mention])
output = {
'mention': args.mention,
}
if args.show_embeddings:
output = {
'mention': args.mention,
'mention_sparse_embeds': mention_sparse_embeds.squeeze(0),
'mention_dense_embeds': mention_dense_embeds.squeeze(0)
}
if args.show_predictions:
if args.dictionary_path == None:
print('insert the dictionary path')
return
# cache or load dictionary
dictionary, dict_sparse_embeds, dict_dense_embeds = cache_or_load_dictionary(biosyn, args.model_name_or_path, args.dictionary_path)
# calcuate score matrix and get top 5
sparse_score_matrix = biosyn.get_score_matrix(
query_embeds=mention_sparse_embeds,
dict_embeds=dict_sparse_embeds
)
dense_score_matrix = biosyn.get_score_matrix(
query_embeds=mention_dense_embeds,
dict_embeds=dict_dense_embeds
)
sparse_weight = biosyn.get_sparse_weight().item()
hybrid_score_matrix = sparse_weight * sparse_score_matrix + dense_score_matrix
hybrid_candidate_idxs = biosyn.retrieve_candidate(
score_matrix = hybrid_score_matrix,
topk = 5
)
# get predictions from dictionary
predictions = dictionary[hybrid_candidate_idxs].squeeze(0)
output['predictions'] = []
for prediction in predictions:
predicted_name = prediction[0]
predicted_id = prediction[1]
output['predictions'].append({
'name': predicted_name,
'id': predicted_id
})
print(output)
if __name__ == '__main__':
args = parse_args()
main(args)