-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
48 lines (37 loc) · 1.38 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import json
import networkx as nx
from functools import partial
from sim.graph_model import GraphModel
from sim.distance_metrics import euclidean_distance
from solvers.convert import convert_distance_matrix_to_string, render_tsplib_file
a_star_shortest_path = partial(nx.astar_path, heuristic=euclidean_distance)
a_star_shortest_path_length = partial(
nx.astar_path_length, heuristic=euclidean_distance
)
scenarios = [
(3, 0, 0), (3, 2, 8), (3, 3, 8), (3, 4, 7),
(4, 0, 3), (4, 2, 7), (4, 3, 1), (4, 4, 6),
(5, 0, 1), (5, 1, 0), (5, 2, 5), (5, 4, 3),
(6, 1, 4), (6, 2, 3), (6, 3, 2), (6, 4, 0)
]
for scenario in scenarios:
gen, n, m = scenario
graph_data_path = f"gen{gen}/visibility_graph-{n}-{m}.json"
packages_path = f"gen{gen}/packages-{n}-{m}.json"
name = f"custom-{gen}-{m}-{n}"
model = GraphModel(
data_path=graph_data_path,
sp_alg=a_star_shortest_path,
sp_length_alg=a_star_shortest_path_length,
distance_metric=euclidean_distance
)
with open(packages_path) as f:
nodes = json.load(f)["nodes"]
for node in nodes:
model.insert_node(tuple(node))
matrix = model.create_distance_matrix()
m = convert_distance_matrix_to_string(matrix)
tsplib_file = render_tsplib_file(
name=name, dimension=len(matrix), distance_matrix=m, output_dir="custom_tsplibs"
)
print(tsplib_file)