-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathrun_mujoco.py
231 lines (204 loc) · 10.4 KB
/
run_mujoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import gym
import time
import argparse
import datetime
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
# Configurations
parser = argparse.ArgumentParser(description='RL algorithms with PyTorch in MuJoCo environments')
parser.add_argument('--env', type=str, default='Humanoid-v2',
help='choose an environment between Hopper-v2, HalfCheetah-v2, Ant-v2 and Humanoid-v2')
parser.add_argument('--algo', type=str, default='atac',
help='select an algorithm among vpg, npg, trpo, ppo, ddpg, td3, sac, asac, tac, atac')
parser.add_argument('--phase', type=str, default='train',
help='choose between training phase and testing phase')
parser.add_argument('--render', action='store_true', default=False,
help='if you want to render, set this to True')
parser.add_argument('--load', type=str, default=None,
help='copy & paste the saved model name, and load it')
parser.add_argument('--seed', type=int, default=0,
help='seed for random number generators')
parser.add_argument('--iterations', type=int, default=200,
help='iterations to run and train agent')
parser.add_argument('--steps_per_iter', type=int, default=5000,
help='steps of interaction for the agent and the environment in each epoch')
parser.add_argument('--max_step', type=int, default=1000,
help='max episode step')
parser.add_argument('--tensorboard', action='store_true', default=True)
parser.add_argument('--gpu_index', type=int, default=0)
args = parser.parse_args()
device = torch.device('cuda', index=args.gpu_index) if torch.cuda.is_available() else torch.device('cpu')
if args.algo == 'vpg':
from agents.vpg import Agent
elif args.algo == 'npg':
from agents.trpo import Agent
elif args.algo == 'trpo':
from agents.trpo import Agent
elif args.algo == 'ppo':
from agents.ppo import Agent
elif args.algo == 'ddpg':
from agents.ddpg import Agent
elif args.algo == 'td3':
from agents.td3 import Agent
elif args.algo == 'sac':
from agents.sac import Agent
elif args.algo == 'asac': # Automating entropy adjustment on SAC
from agents.sac import Agent
elif args.algo == 'tac':
from agents.sac import Agent
elif args.algo == 'atac': # Automating entropy adjustment on TAC
from agents.sac import Agent
def main():
"""Main."""
# Initialize environment
env = gym.make(args.env)
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
act_limit = env.action_space.high[0]
print('---------------------------------------')
print('Environment:', args.env)
print('Algorithm:', args.algo)
print('State dimension:', obs_dim)
print('Action dimension:', act_dim)
print('Action limit:', act_limit)
print('---------------------------------------')
# Set a random seed
env.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Create an agent
if args.algo == 'ddpg' or args.algo == 'td3':
agent = Agent(env, args, device, obs_dim, act_dim, act_limit,
expl_before=10000,
act_noise=0.1,
hidden_sizes=(256,256),
buffer_size=int(1e6),
batch_size=256,
policy_lr=3e-4,
qf_lr=3e-4)
elif args.algo == 'sac':
agent = Agent(env, args, device, obs_dim, act_dim, act_limit,
expl_before=10000,
alpha=0.2, # In HalfCheetah-v2 and Ant-v2, SAC with 0.2
hidden_sizes=(256,256), # shows the best performance in entropy coefficient
buffer_size=int(1e6), # while, in Humanoid-v2, SAC with 0.05 shows the best performance.
batch_size=256,
policy_lr=3e-4,
qf_lr=3e-4)
elif args.algo == 'asac':
agent = Agent(env, args, device, obs_dim, act_dim, act_limit,
expl_before=10000,
automatic_entropy_tuning=True,
hidden_sizes=(256,256),
buffer_size=int(1e6),
batch_size=256,
policy_lr=3e-4,
qf_lr=3e-4)
elif args.algo == 'tac':
agent = Agent(env, args, device, obs_dim, act_dim, act_limit,
expl_before=10000,
alpha=0.2,
log_type='log-q',
entropic_index=1.2,
hidden_sizes=(256,256),
buffer_size=int(1e6),
batch_size=256,
policy_lr=3e-4,
qf_lr=3e-4)
elif args.algo == 'atac':
agent = Agent(env, args, device, obs_dim, act_dim, act_limit,
expl_before=10000,
log_type='log-q',
entropic_index=1.2,
automatic_entropy_tuning=True,
hidden_sizes=(256,256),
buffer_size=int(1e6),
batch_size=256,
policy_lr=3e-4,
qf_lr=3e-4)
else: # vpg, npg, trpo, ppo
agent = Agent(env, args, device, obs_dim, act_dim, act_limit, sample_size=4096)
# If we have a saved model, load it
if args.load is not None:
pretrained_model_path = os.path.join('./save_model/' + str(args.load))
pretrained_model = torch.load(pretrained_model_path, map_location=device)
agent.policy.load_state_dict(pretrained_model)
# Create a SummaryWriter object by TensorBoard
if args.tensorboard and args.load is None:
dir_name = 'runs/' + args.env + '/' \
+ args.algo \
+ '_s_' + str(args.seed) \
+ '_t_' + datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
writer = SummaryWriter(log_dir=dir_name)
start_time = time.time()
total_num_steps = 0
train_sum_returns = 0.
train_num_episodes = 0
# Main loop
for i in range(args.iterations):
# Perform the training phase, during which the agent learns
if args.phase == 'train':
train_step_count = 0
while train_step_count <= args.steps_per_iter:
agent.eval_mode = False
# Run one episode
train_step_length, train_episode_return = agent.run(args.max_step)
total_num_steps += train_step_length
train_step_count += train_step_length
train_sum_returns += train_episode_return
train_num_episodes += 1
train_average_return = train_sum_returns / train_num_episodes if train_num_episodes > 0 else 0.0
# Log experiment result for training steps
if args.tensorboard and args.load is None:
writer.add_scalar('Train/AverageReturns', train_average_return, total_num_steps)
writer.add_scalar('Train/EpisodeReturns', train_episode_return, total_num_steps)
if args.algo == 'asac' or args.algo == 'atac':
writer.add_scalar('Train/Alpha', agent.alpha, total_num_steps)
# Perform the evaluation phase -- no learning
eval_sum_returns = 0.
eval_num_episodes = 0
agent.eval_mode = True
for _ in range(10):
# Run one episode
eval_step_length, eval_episode_return = agent.run(args.max_step)
eval_sum_returns += eval_episode_return
eval_num_episodes += 1
eval_average_return = eval_sum_returns / eval_num_episodes if eval_num_episodes > 0 else 0.0
# Log experiment result for evaluation steps
if args.tensorboard and args.load is None:
writer.add_scalar('Eval/AverageReturns', eval_average_return, total_num_steps)
writer.add_scalar('Eval/EpisodeReturns', eval_episode_return, total_num_steps)
if args.phase == 'train':
print('---------------------------------------')
print('Iterations:', i + 1)
print('Steps:', total_num_steps)
print('Episodes:', train_num_episodes)
print('EpisodeReturn:', round(train_episode_return, 2))
print('AverageReturn:', round(train_average_return, 2))
print('EvalEpisodes:', eval_num_episodes)
print('EvalEpisodeReturn:', round(eval_episode_return, 2))
print('EvalAverageReturn:', round(eval_average_return, 2))
print('OtherLogs:', agent.logger)
print('Time:', int(time.time() - start_time))
print('---------------------------------------')
# Save the trained model
if (i + 1) >= 180 and (i + 1) % 20 == 0:
if not os.path.exists('./save_model'):
os.mkdir('./save_model')
ckpt_path = os.path.join('./save_model/' + args.env + '_' + args.algo \
+ '_s_' + str(args.seed) \
+ '_i_' + str(i + 1) \
+ '_tr_' + str(round(train_episode_return, 2)) \
+ '_er_' + str(round(eval_episode_return, 2)) + '.pt')
torch.save(agent.policy.state_dict(), ckpt_path)
elif args.phase == 'test':
print('---------------------------------------')
print('EvalEpisodes:', eval_num_episodes)
print('EvalEpisodeReturn:', round(eval_episode_return, 2))
print('EvalAverageReturn:', round(eval_average_return, 2))
print('Time:', int(time.time() - start_time))
print('---------------------------------------')
if __name__ == "__main__":
main()