comments | difficulty | edit_url | rating | source | tags | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2001 |
Weekly Contest 300 Q4 |
|
You are given an m x n
integer matrix grid
, where you can move from a cell to any adjacent cell in all 4
directions.
Return the number of strictly increasing paths in the grid such that you can start from any cell and end at any cell. Since the answer may be very large, return it modulo 109 + 7
.
Two paths are considered different if they do not have exactly the same sequence of visited cells.
Example 1:
Input: grid = [[1,1],[3,4]] Output: 8 Explanation: The strictly increasing paths are: - Paths with length 1: [1], [1], [3], [4]. - Paths with length 2: [1 -> 3], [1 -> 4], [3 -> 4]. - Paths with length 3: [1 -> 3 -> 4]. The total number of paths is 4 + 3 + 1 = 8.
Example 2:
Input: grid = [[1],[2]] Output: 3 Explanation: The strictly increasing paths are: - Paths with length 1: [1], [2]. - Paths with length 2: [1 -> 2]. The total number of paths is 2 + 1 = 3.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 1000
1 <= m * n <= 105
1 <= grid[i][j] <= 105
We design a function
The calculation process of the function
- If
$f[i][j]$ is not$0$ , it means that it has been calculated, and$f[i][j]$ is returned directly; - Otherwise, we initialize
$f[i][j] = 1$ , and then enumerate the four directions of$(i, j)$ . If the grid$(x, y)$ in a certain direction satisfies$0 \leq x \lt m$ ,$0 \leq y \lt n$ , and$grid[i][j] \lt grid[x][y]$ , we can start from the grid$(i, j)$ to the grid$(x, y)$ , and the number on the path is strictly increasing, so$f[i][j] += dfs(x, y)$ .
Finally, we return
The answer is
The time complexity is
class Solution:
def countPaths(self, grid: List[List[int]]) -> int:
@cache
def dfs(i: int, j: int) -> int:
ans = 1
for a, b in pairwise((-1, 0, 1, 0, -1)):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[i][j] < grid[x][y]:
ans = (ans + dfs(x, y)) % mod
return ans
mod = 10**9 + 7
m, n = len(grid), len(grid[0])
return sum(dfs(i, j) for i in range(m) for j in range(n)) % mod
class Solution {
private int[][] f;
private int[][] grid;
private int m;
private int n;
private final int mod = (int) 1e9 + 7;
public int countPaths(int[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
f = new int[m][n];
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = (ans + dfs(i, j)) % mod;
}
}
return ans;
}
private int dfs(int i, int j) {
if (f[i][j] != 0) {
return f[i][j];
}
int ans = 1;
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[i][j] < grid[x][y]) {
ans = (ans + dfs(x, y)) % mod;
}
}
return f[i][j] = ans;
}
}
class Solution {
public:
int countPaths(vector<vector<int>>& grid) {
const int mod = 1e9 + 7;
int m = grid.size(), n = grid[0].size();
int f[m][n];
memset(f, 0, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) -> int {
if (f[i][j]) {
return f[i][j];
}
int ans = 1;
int dirs[5] = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[i][j] < grid[x][y]) {
ans = (ans + dfs(x, y)) % mod;
}
}
return f[i][j] = ans;
};
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = (ans + dfs(i, j)) % mod;
}
}
return ans;
}
};
func countPaths(grid [][]int) (ans int) {
const mod = 1e9 + 7
m, n := len(grid), len(grid[0])
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
var dfs func(int, int) int
dfs = func(i, j int) int {
if f[i][j] != 0 {
return f[i][j]
}
f[i][j] = 1
dirs := [5]int{-1, 0, 1, 0, -1}
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[i][j] < grid[x][y] {
f[i][j] = (f[i][j] + dfs(x, y)) % mod
}
}
return f[i][j]
}
for i, row := range grid {
for j := range row {
ans = (ans + dfs(i, j)) % mod
}
}
return
}
function countPaths(grid: number[][]): number {
const mod = 1e9 + 7;
const m = grid.length;
const n = grid[0].length;
const f = new Array(m).fill(0).map(() => new Array(n).fill(0));
const dfs = (i: number, j: number): number => {
if (f[i][j]) {
return f[i][j];
}
let ans = 1;
const dirs: number[] = [-1, 0, 1, 0, -1];
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[i][j] < grid[x][y]) {
ans = (ans + dfs(x, y)) % mod;
}
}
return (f[i][j] = ans);
};
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
ans = (ans + dfs(i, j)) % mod;
}
}
return ans;
}