-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathglas_analysis.py
executable file
·51 lines (42 loc) · 1.59 KB
/
glas_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#! /usr/bin/env python
#Sample analysis workflow
#Clustering, gridding
import numpy as np
from pygeotools.lib import timelib, geolib, iolib
from osgeo import osr
glas_csv_fn='GLAH14_chad_refdemfilt.csv'
srtm_fn='chad_nasadem_hgt_merge_hgt_adj_proj_hs_az315.tif'
srtm_ds=iolib.fn_getds(srtm_fn)
# dt_ordinal, dt_YYYYMMDD, lat, lon, z_WGS84, z_refdem_med_WGS84, z_refdem_nmad
glas_pts = np.loadtxt(glas_csv_fn, delimiter=',', skiprows=1, dtype=None)
srs=osr.SpatialReference()
srs.ImportFromEPSG(32633)
x, y, z = geolib.cT_helper(glas_pts[:,3], glas_pts[:,2], glas_pts[:,4], geolib.wgs_srs, srs)
#pt_array = glas_pts[:,[3,2,4,0]]
pt_array = np.array([x, y, z, glas_pts[:,0]]).T
#Cluster
dt_thresh=16.0
d = np.diff(pt_array[:,3])
b = np.nonzero(d > dt_thresh)[0] + 1
b = np.hstack((0, b, d.shape[0]))
f_list = []
dt_list = []
for i in range(len(b)-1):
f = pt_array[b[i]:b[i+1]]
min_dt = timelib.o2dt(f[:,3].min())
max_dt = timelib.o2dt(f[:,3].max())
mid_dt = f[:,3].min() + (f[:,3].max() - f[:,3].min())/2.0
mean_dt = timelib.o2dt(f[:,3].mean())
med_dt = timelib.o2dt(np.median(f[:,3]))
f_list.append(f)
dt_list.append([min_dt, max_dt, mid_dt, mean_dt, med_dt])
statlist=('median', 'mean', 'count', 'std')
res=300
for n,f in enumerate(f_list):
mean_dt = dt_list[n][3]
for stat in statlist:
g_count, ds = geolib.block_stats_grid_gen(f[:,0], f[:,1], f[:,2], res=res, srs=srs, stat=stat)
out_fn = mean_dt.strftime('%Y%m%d_%H%M_')+stat+'_'+str(res)+'m.tif'
iolib.writeGTiff(g_count, out_fn, ds)
#Make stacks
#Create function to wrap ASP point2dem for interpolation