-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
31 lines (24 loc) · 972 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
from made import MADE
from data import MNIST
from utils import test, sample_digits, sample_digits_half, sample_best
from test import test_model_gaussian
# Get datasets and train loaders.
mnist = MNIST()
_, _, test = mnist.get_data_splits()
test_loader = torch.utils.data.DataLoader(test, batch_size=128, shuffle=True)
# --------- parameters ----------
n_in = 784
hidden_dims = [8000]
seed = 19
random_order = False
# -------------------------------
model = MADE(n_in, hidden_dims, random_order=random_order, seed=seed, gaussian=False)
string = "_".join([str(h) for h in hidden_dims])
checkpoint = torch.load("model_saves/model" + string + ".pt")
model.load_state_dict(checkpoint["model_state_dict"])
tot_epochs = checkpoint["epoch"]
# sample_digits(model, tot_epochs, random_order=random_order, test=True)
# sample_best(model, tot_epochs)
# sample_digits_half(model, tot_epochs, random_order=random_order, test=True)
test(model, tot_epochs, plot=True)