-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdata_utils.py
707 lines (482 loc) · 20.7 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
import numpy as np
import os
# from konlpy.tag import Kkma
# from konlpy.tag import Twitter
from konlpy.tag import Mecab
from collections import Counter
import pickle
import codecs
import argparse
import re
mecab = Mecab()
class Vocabulary():
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __len__(self):
return len(self.word2idx)
def build_vocab(text_list, threshold):
"""Build a simple vocab"""
counter = Counter()
# tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
for i, text in enumerate(text_list):
print(text)
# text = text.strip()
# text = text.lower()
# ToDo: English
# tokens_en = nltk.word_tokenize(text)
# tokens_en = mecab.pos(text)
counter.update(text)
if i % 1000 == 0:
print("[%d/%d] Tokenized input text." %(i, len(text_list)))
# words = [word for word, cnt in counter.items() if cnt >= threshold]
words = [word for word, cnt in counter.items()]
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<eos>')
vocab.add_word('<unk>')
for i, word in enumerate(words):
vocab.add_word(word)
print("Voca_size: ",len(vocab))
print(vocab.idx2word)
return vocab
def build_char_vocab(text_list, threshold):
"""Build a simple vocab"""
counter = Counter()
# tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
for i, text in enumerate(text_list):
for word in text:
for char in word:
counter.update(char)
# words = [word for word, cnt in counter.items() if cnt >= threshold]
chars = [char for char, cnt in counter.items()]
char_vocab = Vocabulary()
char_vocab.add_word('<pad>')
char_vocab.add_word('<unk>')
for i, char in enumerate(chars):
char_vocab.add_word(char)
print("Char_Voca_size: ",len(char_vocab))
print(char_vocab.idx2word)
return char_vocab
def load_data_interactive(input_str):
# Load data_in from files
x_mor_list = list()
x_pos_list = list()
x_split_list = list()
lines = [input_str]
re_word = re.compile('<(.+?):[A-Z]{2}>')
for line in lines:
line = line.strip() #좌우 공백 제거
raw_data = line
split_raw_data = raw_data.split(' ')
pos_data = mecab.pos(raw_data)
x_split = []
x_mor = []
x_pos = []
i = 0
len_pos_word = 0
len_split_word = 0
for mor_pos in pos_data:
if mor_pos[0] in split_raw_data[i]:
len_pos_word += len(mor_pos[0])
len_split_word = len(split_raw_data[i])
# new_pos_data.append([i, pos_word[0], pos_word[1]])
x_split.append(i)
x_mor.append(mor_pos[0])
x_pos.append(mor_pos[1])
if len_pos_word == len_split_word:
i = i + 1
len_pos_word = 0
len_split_word = 0
if len(x_mor) == 0: #mecab에러인지.. 가끔 하나가 빠짐 그거 제외
continue
x_mor_list.append(x_mor)
x_pos_list.append(x_pos)
x_split_list.append(x_split)
return x_mor_list, x_pos_list, x_split_list
def load_data_and_labels_exo(data_file_dir):
# Load data_in from files
x_mor_list = list()
x_pos_list = list()
x_split_list = list()
y_list = list()
file_obj = codecs.open(data_file_dir, "r", "utf-8" )
lines = file_obj.readlines()
NER_label_list = [':PS',':DT',':LC',':OG',':TI']
NER_dict = {'<PAD>': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'<START>':[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
'<STOP>':[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
'B_LC':[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
'B_DT': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
'B_OG': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
'B_TI': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
'B_PS': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
'I': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
'O': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}
re_word = re.compile('<(.+?):[A-Z]{2}>')
for line in lines:
line = line.strip()
raw_data = line.replace('<','').replace('>','').replace(':PS','').replace(':DT','').replace(':LC','').replace(':OG','').replace(':TI','')
split_raw_data = raw_data.split(' ')
pos_data = mecab.pos(raw_data)
x_split = []
x_mor = []
x_pos = []
i = 0
len_pos_word = 0
len_split_word = 0
for mor_pos in pos_data:
if mor_pos[0] in split_raw_data[i]:
len_pos_word += len(mor_pos[0])
len_split_word = len(split_raw_data[i])
# new_pos_data.append([i, pos_word[0], pos_word[1]])
x_split.append(i)
x_mor.append(mor_pos[0])
x_pos.append(mor_pos[1])
if len_pos_word == len_split_word:
i = i + 1
len_pos_word = 0
len_split_word = 0
if len(x_mor) == 0: #mecab에러인지... 가끔 하나가 빠짐 그거 제외
continue
x_mor_list.append(x_mor)
x_pos_list.append(x_pos)
x_split_list.append(x_split)
# label data
label_data = line
label_split_data = label_data.split(' ')
re_result = re_word.finditer(label_data)
raw_re_word_list = []
temp_re_word_list = []
re_NER_list = []
for re_result_item in re_result:
re_NER_list.append(re_result_item.group()[-3:-1])
raw_re_word_list.append(re_word.findall((re_result_item.group())))
temp_re_word_list.append(re_word.findall((re_result_item.group()[1:])))
for i, temp_re_word_item in enumerate(temp_re_word_list):
if len(temp_re_word_item) != 0:
raw_re_word_list[i] = temp_re_word_item
# re_NER_list = re_NER.findall(label_data)
re_word_list = [[re_word[0].replace(' ', '')] for re_word in raw_re_word_list]
# print("re_word_list:",re_word_list)
y_data = ['O'] * len(x_mor)
B_flag = 0
data_len = 0
B_I_data_len = 0
for i in range(len(x_mor)):
pos_i_split = x_split[i]
word_mor = x_mor[i]
pos = x_pos[i]
if len(re_word_list) == 0:
continue
if word_mor in re_word_list[0][0]:
# print("word_mor:", word_mor)
# print("data_len:", data_len)
# print("B_I_data_len:", B_I_data_len)
if B_flag == 0 and re_word_list[0][0].startswith(word_mor):
data_len += len(word_mor)
B_I_data_len = len(re_word_list[0][0])
y_data[i] = 'B_'+re_NER_list[0]
B_flag = 1 # B_ token mark
if data_len == B_I_data_len:
re_word_list.pop(0)
re_NER_list.pop(0)
data_len = 0
B_I_data_len = 0
B_flag = 0 # B_ token mark init
elif i + 1 < len(x_mor):
if x_mor[i + 1] not in re_word_list[0][0]: # 시작일줄 알았는데 서브스트링이고, 매칭도 안되고 다음글자가 속하지 않으면 다시 리셋
y_data[i] = 'O'
B_flag = 0
data_len = 0
B_I_data_len = 0
B_flag = 0 # B_ token mark init
elif B_flag == 1:
data_len += len(word_mor)
B_I_data_len = len(re_word_list[0][0])
if data_len != B_I_data_len:
y_data[i] = 'I'
elif data_len == B_I_data_len:
y_data[i] = 'I'
re_word_list.pop(0)
re_NER_list.pop(0)
data_len = 0
B_I_data_len = 0
B_flag = 0
# print("y_data: ", y_data)
y_data_idx = []
for y in y_data:
y_data_idx.append(NER_dict[y])
y_list.append(y_data_idx)
#y_list = np.array(y_list)
return x_mor_list, x_pos_list, x_split_list, y_list
def load_data_and_labels_klp(data_file_dir):
# Load data_in from files
x_mor_list = list()
x_pos_list = list()
x_split_list = list()
y_list = list()
file_obj = codecs.open(data_file_dir, "r", "utf-8" )
lines = file_obj.readlines()
NER_label_list = [':PS',':DT',':LC',':OG',':TI']
NER_dict = {'<PAD>': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'<START>':[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
'<STOP>':[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
'B_LC':[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
'B_DT': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
'B_OG': [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
'B_TI': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
'B_PS': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
'I': [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
'O': [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]}
re_word = re.compile('<(.+?):[A-Z]{2}>')
for line in lines:
line = line.strip() #좌우 공백 제거
if len(line) == 0:
continue
elif line[0] == ';': # raw data
raw_data = line.replace('; ','')
split_raw_data = raw_data.split(' ')
pos_data = mecab.pos(raw_data)
x_split = []
x_mor = []
x_pos = []
i = 0
len_pos_word = 0
len_split_word = 0
for mor_pos in pos_data:
if mor_pos[0] in split_raw_data[i]:
len_pos_word += len(mor_pos[0])
len_split_word = len(split_raw_data[i])
# new_pos_data.append([i, pos_word[0], pos_word[1]])
x_split.append(i)
x_mor.append(mor_pos[0])
x_pos.append(mor_pos[1])
if len_pos_word == len_split_word:
i = i + 1
len_pos_word = 0
len_split_word = 0
if len(x_mor) == 0: # mecab에러인지... 가끔 하나가 빠짐 그거 제외
continue
x_mor_list.append(x_mor)
x_pos_list.append(x_pos)
x_split_list.append(x_split)
# print("x_mor", x_mor)
elif line[0] == '$': # label data
label_data = line.replace('$','')
# print("label_data: ",label_data)
label_split_data = label_data.split(' ')
re_result = re_word.finditer(label_data)
raw_re_word_list = []
temp_re_word_list = []
re_NER_list = []
for re_result_item in re_result:
re_NER_list.append(re_result_item.group()[-3:-1])
raw_re_word_list.append(re_word.findall((re_result_item.group())))
temp_re_word_list.append(re_word.findall((re_result_item.group()[1:])))
for i, temp_re_word_item in enumerate(temp_re_word_list):
if len(temp_re_word_item) != 0:
raw_re_word_list[i] = temp_re_word_item
# re_NER_list = re_NER.findall(label_data)
re_word_list = [[re_word[0].replace(' ', '')] for re_word in raw_re_word_list]
# print("re_word_list:",re_word_list)
y_data = ['O'] * len(x_mor)
B_flag = 0
data_len = 0
B_I_data_len = 0
for i in range(len(x_mor)):
pos_i_split = x_split[i]
word_mor = x_mor[i]
pos = x_pos[i]
if len(re_word_list) == 0:
continue
if word_mor in re_word_list[0][0]:
# print("word_mor:", word_mor)
# print("data_len:", data_len)
# print("B_I_data_len:", B_I_data_len)
if B_flag == 0 and re_word_list[0][0].startswith(word_mor):
data_len += len(word_mor)
B_I_data_len = len(re_word_list[0][0])
y_data[i] = 'B_' + re_NER_list[0]
B_flag = 1 # B_ token mark
if data_len == B_I_data_len:
re_word_list.pop(0)
re_NER_list.pop(0)
data_len = 0
B_I_data_len = 0
B_flag = 0 # B_ token mark init
elif i+1 < len(x_mor):
if x_mor[i + 1] not in re_word_list[0][0]: # 시작일줄 알았는데 서브스트링이고, 매칭도 안되고 다음글자가 속하지 않으면 다시 리셋
y_data[i] = 'O'
B_flag = 0
data_len = 0
B_I_data_len = 0
B_flag = 0 # B_ token mark init
elif B_flag == 1:
data_len += len(word_mor)
B_I_data_len = len(re_word_list[0][0])
if data_len != B_I_data_len:
y_data[i] = 'I'
elif data_len == B_I_data_len:
y_data[i] = 'I'
re_word_list.pop(0)
re_NER_list.pop(0)
data_len = 0
B_I_data_len = 0
B_flag = 0
# print("y_data: ", y_data)
y_data_idx = []
for y in y_data:
y_data_idx.append(NER_dict[y])
y_list.append(y_data_idx)
#y_list = np.array(y_list)
return x_mor_list, x_pos_list, x_split_list, y_list
def load_lexicon_NER(data_file_dir):
# Load data_in from files
lexicon_list = list()
NER_multi_list = list()
file_obj = codecs.open(data_file_dir, "r", "utf-8" )
lines = file_obj.readlines()
for line in lines:
line = line.strip() #좌우 공백 제거
lexicon, ner_label = line.split('\t')
lexicon_list.append(lexicon)
ner_label_list = ner_label.split(',')
NER_multi_list.append(ner_label_list)
return lexicon_list, NER_multi_list
def plot_word_embeddng(wv_model_ko):
embedding_weights = wv_model_ko.wv.syn0
final_embeddings = embedding_weights
labels = wv_model_ko.wv.index2word
import matplotlib
matplotlib.use('Agg')
from matplotlib import font_manager, rc
print("font_list: ", font_manager.get_fontconfig_fonts())
font_name = font_manager.FontProperties(fname='/Library/Fonts/NanumSquareBold.ttf').get_name()
rc('font', family=font_name)
def plot_with_labels(low_dim_embs, labels, filename='./data_out/tsne_' + str(args.word2vec_dim) + '.png'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(18, 18)) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [labels[i] for i in range(plot_only)]
plot_with_labels(low_dim_embs, labels)
except ImportError:
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")
def generate_word_embedding(x_list):
from gensim.models import word2vec
import multiprocessing
import time
print("multiprocessing.cpu_count(): ",multiprocessing.cpu_count())
config = {
'min_count': 0, # 등장 횟수가 5 이하인 단어는 무시
'size': args.word2vec_dim, # 50차원짜리 벡터스페이스에 embedding
'sg': 1, # 0이면 CBOW, 1이면 skip-gram을 사용
'batch_words': 1000, # 사전을 구축할때 한번에 읽을 단어 수
'iter': 8, # 7, # 보통 딥러닝에서 말하는 epoch과 비슷한, 반복 횟수를 의미 #너무 오래 걸릴땐 좀 낮춰야
'workers': multiprocessing.cpu_count() #윈도우에서 에러
}
docs_ko = x_list
wv_model_ko = word2vec.Word2Vec(**config)
count_t = time.time()
wv_model_ko.build_vocab(docs_ko)
print(wv_model_ko.corpus_count)
wv_model_ko.train(docs_ko, total_examples=wv_model_ko.corpus_count, epochs=3)
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<eos>')
vocab.add_word('<unk>')
for index, word in enumerate(wv_model_ko.wv.index2word):
vocab.add_word(word)
word2vec_matrix = wv_model_ko.wv.syn0
word2vec_matrix = np.concatenate((np.zeros((4, args.word2vec_dim)), word2vec_matrix), axis=0)
wv_model_ko.wv.syn0 = word2vec_matrix
print('Running Time : %.02f' % (time.time() - count_t))
wv_model_ko.save('./data_in/word2vec/ko_word2vec_' + str(args.word2vec_dim) + '.model')
# print(word2vec_matrix[0:5])
print(word2vec_matrix.shape)
print(len(vocab))
# pprint(wv_model_en['man'])
# pprint(wv_model_en.most_similar('man'))
#plot_word_embeddng(wv_model_ko)
return vocab, wv_model_ko
def main(args):
train_data_path = args.data_file_dir_train
# test_data_path = args.data_file_dir_test
vocab_path = args.vocab_path
threshold = args.threshold
x_list, x_pos_list, x_split_list, y_list = load_data_and_labels_klp(train_data_path)
x_list_2, x_pos_list_2, x_split_list_2, y_list_2 = load_data_and_labels_exo('./data_in/EXOBRAIN_NE_CORPUS_10000.txt')
x_list = x_list + x_list_2
x_pos_list = x_pos_list + x_pos_list_2
x_split_list = x_split_list + x_split_list_2
y_list = y_list + y_list_2
y_list = np.array(y_list)
# vocab = build_vocab(x_list, threshold=threshold)
char_vocab = build_char_vocab(x_list, threshold=threshold)
lexicon_list, NER_double_list = load_lexicon_NER('./data_in/gazette/korean_gazette')
lex_dict = {'<unk>': '<unk>'}
for i, lex in enumerate(lexicon_list):
print(NER_double_list[i])
lex_dict[lex] = NER_double_list[i]
with open(args.lex_dict_path, 'wb') as f:
pickle.dump(lex_dict, f)
vocab, wv_model_ko = generate_word_embedding(x_list=x_list)
counter = Counter()
for i, pos in enumerate(x_pos_list):
counter.update(pos)
pos_words = [pos for pos, cnt in counter.items()]
pos_vocab = Vocabulary()
pos_vocab.add_word('<pad>')
pos_vocab.add_word('<start>')
pos_vocab.add_word('<eos>')
pos_vocab.add_word('<unk>')
for i, word in enumerate(pos_words):
pos_vocab.add_word(word)
print(vocab.idx2word)
print(char_vocab.idx2word)
print(pos_vocab.idx2word)
print("len(vocab.idx2word):",vocab.idx2word)
with open(args.vocab_path, 'wb') as f:
pickle.dump(vocab, f)
with open(args.pos_vocab_path, 'wb') as f:
pickle.dump(pos_vocab, f)
with open(args.char_vocab_path, 'wb') as f:
pickle.dump(char_vocab, f)
print("Total vocabulary size: %d" %len(vocab))
print("Saved vocab to '%s'" %vocab_path)
# # print(vocab.word2idx)
# # {'<pad>': 0, '<unk>': 1, 'bromwell': 2, 'high': 3, 'is': 4, 'a': 5, 'comedy': 6, '.': 7, 'it': 8, 'ran': 9,..}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_file_dir_train', type=str, default='./data_in/2016klpNER.base_train')
# parser.add_argument('--data_file_dir_test', type=str, default='./data_in')
parser.add_argument('--vocab_path', type=str, default='./data_in/vocab_ko_NER.pkl')
parser.add_argument('--char_vocab_path', type=str, default='./data_in/char_vocab_ko_NER.pkl')
parser.add_argument('--pos_vocab_path', type=str, default='./data_in/pos_vocab_ko_NER.pkl')
parser.add_argument('--lex_dict_path', type=str, default='./data_in/lex_dict.pkl')
parser.add_argument('--threshold', type=int, default=4)
parser.add_argument('--word2vec_dim', type=int, default=50)
args = parser.parse_args()
main(args)