-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo.py
76 lines (48 loc) · 1.93 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import sys
from pathlib import Path
file = Path(__file__). resolve()
package_root_directory = file.parents [1]
sys.path.append(str(package_root_directory))
import numpy as np
import re
import sklearn.pipeline
from copy import deepcopy
from abc import abstractmethod
from scipy.ndimage.filters import gaussian_filter
from skimage.feature import hog
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA, TruncatedSVD
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.impute import MissingIndicator
from sklearn.pipeline import FeatureUnion
from sklearn.preprocessing import StandardScaler, FunctionTransformer
from typing import Dict, Iterable, Type, Optional
from datascope.importance.common import SklearnModelUtility, binarize, get_indices
from datascope.importance.shapley import ShapleyImportance, ImportanceMethod
from experiments.dataset import Dataset
from experiments.pipelines import Pipeline, get_model, ModelType
from sklearn import datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
# Inject noise
X_train_dirty = deepcopy(X_train)
y_train_dirty = deepcopy(y_train)
y_train_dirty = 2 - y_train_dirty
model = get_model(ModelType.LogisticRegression)
utility = SklearnModelUtility(model, accuracy_score)
method = ImportanceMethod.NEIGHBOR
importance = ShapleyImportance(method=method, utility=utility)
importances = importance.fit(X_train_dirty, y_train_dirty).score(X_test, y_test)
ordered_examples = np.argsort(importances)
for i in ordered_examples:
# current model
clf = LogisticRegression(random_state=0).fit(X_train_dirty, y_train_dirty)
score = clf.score(X_test, y_test)
print(score)
# fix a label
y_train_dirty[i] = y_train[i]