-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathESA2021_PresentationFigures.R
137 lines (116 loc) · 6.34 KB
/
ESA2021_PresentationFigures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
##ESA 2021 Presentation Figures
##This script assumes that you have the following data files:
submittedForecasts <- read.csv("phenology_combined_forecasts.csv",header=TRUE)
allTransitions <- read.csv("allPhenologyTransitionData.csv",header=TRUE) #Created in calculatePhenoCamTransitionDates.R script
library(scales)
library(colorBlindness)
library(dplyr)
s=1
tms <- unique(submittedForecasts$team)
site_names <- c("HARV", "BART", "SCBI", "STEI", "UKFS", "GRSM", "DELA", "CLBJ")
#Figure 1: Dates of forecast and submission figure
tranDates <- as.Date(allTransitions[,2],origin=as.Date("2020-12-31"))
tranDates <- c(tranDates,as.Date(allTransitions[,6],origin=as.Date("2020-12-31")))
challengeDays <- seq(as.Date("2021-02-01"),as.Date("2021-06-30"),"day")
jpeg(file="DatesOfForecastAndSubmissionFigure.jpg",width = 1000, height = 480, units = "px")#,height=3,width=10,units="inch",res=700)
par(mfrow=c(1,2),mai=c(1,2,0.3,0.1))
#for(s in 1:length(site_names)){
submittedForecastsYes <- data.frame(matrix(ncol=length(tms),nrow=length(challengeDays)))
for(tm in 1:length(tms)){
tmDat <- submittedForecasts[submittedForecasts$team==tms[tm],] #Subset by team
tmSitDat <- tmDat[tmDat$siteID==site_names[s],] #Subset by site
uniqueTimes <- unique(as.Date(tmSitDat$time))
for(d in 1:length(challengeDays)){
submittedForecastsYes[d,tm] <- challengeDays[d] %in% uniqueTimes
}
}
colnames(submittedForecastsYes) <- tms
#Plot first team and then add on subsequent teams onto the graph
tm=1
plot(challengeDays[submittedForecastsYes[,tm]],rep(tm,length(challengeDays))[submittedForecastsYes[,tm]],pch=20,
xlab="Time",ylab="",ylim=c(0,length(tms)),bty="n",yaxt="n",main="Forecasted Days")
axis(side = 2,at=seq(1,length(tms)),labels=tms,pos=as.Date("2021-01-20"),las=1)
polygon(x=c(min(tranDates),min(tranDates),max(tranDates),max(tranDates)),y=c(-0.9,length(tms)+1,length(tms)+1,-0.9),col="chartreuse3",border=NA)
for(tm in 1:length(tms)){
points(challengeDays[submittedForecastsYes[,tm]],rep(tm,length(challengeDays))[submittedForecastsYes[,tm]],pch=20)
}
#Plot dates of submissions
submittedForecastsYes <- data.frame(matrix(ncol=length(tms),nrow=length(challengeDays)))
for(tm in 1:length(tms)){
tmDat <- submittedForecasts[submittedForecasts$team==tms[tm],] #Subset by team
tmSitDat <- tmDat[tmDat$siteID==site_names[s],] #Subset by site
uniqueTimes <- unique(as.Date(tmSitDat$forecast_start_time))
for(d in 1:length(challengeDays)){
submittedForecastsYes[d,tm] <- challengeDays[d] %in% uniqueTimes
}
}
colnames(submittedForecastsYes) <- tms
tm=1
par(mai=c(1,0.1,0.3,2))
plot(challengeDays[submittedForecastsYes[,tm]],rep(tm,length(challengeDays))[submittedForecastsYes[,tm]],pch=20,
xlab="Time",ylab="",ylim=c(0,length(tms)),bty="n",yaxt="n",main="Submission Days",xlim=range(challengeDays))
polygon(x=c(min(tranDates),min(tranDates),max(tranDates),max(tranDates)),y=c(-0.9,length(tms)+1,length(tms)+1,-0.9),col="chartreuse3",border=NA)
for(tm in 1:length(tms)){
points(challengeDays[submittedForecastsYes[,tm]],rep(tm,length(challengeDays))[submittedForecastsYes[,tm]],pch=20)
}
#}
dev.off()
#Figure 2: Changes in forecasted values on transition dates
s=1
sitDat <- submittedForecasts[submittedForecasts$siteID==site_names[s],] #Subset by site
cls <- c("#004949","#000000",paletteMartin[3:15])
pdf(file="ForecastedValuesOnTransitionDates_presentationFigures.pdf",height=5,width=12)
par(mfrow=c(1,4),mai=c(0.5,0.5,1,0.1))
plotForecastedValuesOverTime <- function(highlightTms=NA){
finalTms <- character()
for(t in c(2,5,8)){ #Loops over the transition dates
cl <- 1
tranDate <- as.Date(allTransitions[s,t],origin=as.Date("2020-12-31"))
vl <- allTransitions[s,(t+1)]
sdVal <- allTransitions[s,(t+2)]
vl <- rescale(vl,to=c(0,1),from=c(allTransitions$minimum[s],allTransitions$maximum[s])) ##Rescales gcc values between 0 and 1
plot(x=numeric(),y=numeric(),type="l",xlim=c(-35,0),ylim=c(0,1),ylab="",xlab="Days Before Transition Date",main=paste(site_names[s],tranDate),bty="n")
abline(h=vl,col="red",lwd=5,lty=2)
for(tm in 1:length(tms)){
tmSitDat <- sitDat[sitDat$team==tms[tm],] #Subset by team
predDat <- tmSitDat[as.Date(tmSitDat$time)==tranDate,] #Subset of the forecasts that forecasted the transition date
#Organizing data to put upper95, lower95, and mean on the same row
organizedDat <- predDat[predDat$statistic=="mean",c("time","forecast_start_time","gcc_90")]
organizedDat <- organizedDat %>% rename("mean"="gcc_90")
lowDat <- predDat[predDat$statistic=="lower95",c("time","forecast_start_time","gcc_90")]
lowDat <- lowDat %>% rename("lower95"="gcc_90")
highDat <- predDat[predDat$statistic=="upper95",c("time","forecast_start_time","gcc_90")]
highDat <- highDat %>% rename("upper95"="gcc_90")
organizedDat <- merge(organizedDat,lowDat,by=c("time","forecast_start_time"))
organizedDat <- merge(organizedDat,highDat,by=c("time","forecast_start_time"))
if(nrow(organizedDat)>0){
if(t==8){
finalTms <- c(finalTms,as.character(tms[tm]))
}
sitTmMax <- max(tmSitDat$gcc_90[tmSitDat$statistic=="mean"],na.rm=TRUE)
rescaledDat <- rescale(organizedDat$mean,to=c(0,1),from=c(allTransitions$minimum[s],sitTmMax)) #Rescales forecasted values between 0 and 1
for(j in 1:length(rescaledDat)){ #Some values get scaled below 0
rescaledDat[j] <- max(rescaledDat[j],0)
}
if(is.na(highlightTms) || tm%in%highlightTms){ #No transparency if you do not want to highlight teams
#or if the team is within the highlighted teams
tF <- 1
lwdVl <- 3
}else{
tF <- 0.2
lwdVl <- 1
}
lines(as.Date(organizedDat$forecast_start_time)-tranDate,rescaledDat,col=scales::alpha(cls[cl],tF),lwd=lwdVl)
cl <- cl + 1
}
}
}
plot(x=numeric(),y=numeric(),type="l",xlim=c(-35,0),ylim=c(0,1),ylab="",xlab="",main="Legend",bty="n")
legend("topleft",c("True Value",as.character(finalTms)),col=c("red",cls[1:length(finalTms)]),lty=c(2,rep(1,length(finalTms))),lwd=c(2,rep(3,length(finalTms))),bty = "n")
}
plotForecastedValuesOverTime()
plotForecastedValuesOverTime(highlightTms = 12)
plotForecastedValuesOverTime(highlightTms = 1)
plotForecastedValuesOverTime(highlightTms = 13)
plotForecastedValuesOverTime(highlightTms = c(2,11))
dev.off()