-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnv_PixelClassifier.m
290 lines (263 loc) · 13.4 KB
/
Env_PixelClassifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
% env vars for running pixel classifier
% INSTRUCTIONS:
% Update env.class_dir_local each time I have new training files. UPdate
% env.class_dir_asc automatically as long as I update env.run
%% Preliminary
clear env
global env
%% source gdal (try to avoid gdal_edit.py errors)
if isunix
unix('source /opt/PGSCplus-2.2.2/init-gdal.sh')
end
%% options
load_env=0; % load env. from previous run?
%% Params for training and classifying
env.inputType='Freeman'; % tag: common %OPTIONS: 'Freeman', 'LUT-Freeman', 'C3', 'Freeman-T3' or 'gray', 'Freeman-inc', 'C3-inc', 'T3', 'Norm-Fr-C11-inc', 'Sinclair', 'Sinclair-hgt'
env.rangeCorrection=1;
env.equalizeTrainClassSizes=1; % Delete some training data so that all training classes have aprox. = sizes (not per image, but overall)
env.run='43'; % tag: common
env.IncMaskMin=0.5; %0.5; % minimum inc. angle to allow if applying incidence angle mask % only valid for Freeman, C3, T3 with no inc band used as a feature; set to zero to ignore <------- HERE
env.IncMaskMax=Inf % 1.07; %1.0; % max inc. angle to allow if applying incidence angle mask % only valid for Freeman, C3, T3 with no inc band used as a feature; set to Inf to ignore
env.useFullExtentClassifier=false; % depricated!
env.blockProcessing=true; % whether or not to use
%% Params for trainingImageImport.m
env.trainingClassRasters=0; % tag: common % set to 1 to make training class rasters; 0 for viewing/classification image only in the Test folder
env.training_run='43'; % tag: common % set different from env.run if using a model from previous run or training to a diff dir. Only matters on ASC.
env.training_class_run='43'; % tag: common % for shapefiles
env.useFullExtentImport=1; % switch to use full scene extent and ignore bounding box from input runfile
env.output.cls_dir_local='/att/nobackup/ekyzivat/PixelClassifier';
env.output.cls_dir_asc='/att/nobackup/ekyzivat/PixelClassifier';
env.class_dir_local='F:\PAD2019\classification_training\Checkpoint-2020-march-12';
% Which files to import as training images
if isunix % on ASC % tag: common
env.trainFileNums= [1 2 3 4 7 8 9 11 13 14 15 16 17 21 22 23 24 25 27:32]; % <- all? % [46:52] %[50 48]; % (Atquasuk and Toolik) % from block-proc: [45 46 47 48 50 51 52]; %28; %[13 43 44]% 33 bonanz: 27,28 % [3 4 11 13 14 21 23 24 25 30 31 32] % didn't work: 16 17 % [1 2 7 8 9 15 22]; %[3 4 11 13 14 21 22 23 24 25]; %[3 4 11 13 14 16 17 21 22 23 24 25 x26]; %[1 2 3 4 7 8 9 11 13 14 15 16 17 21 22 23 24 25 x26] %[1, 15]; %[1,2,7,8,9,15]; %[1,2,3,4,7,8,9,13, 14, 15, 16, 17]; %; %[7]; %[1 2 8 9 10 11 12 13]; % [1 2]
else % on local
env.trainFileNums=[1,2]; %15% [1 2]
end
%% Dynamic I/O
env.class_dir_asc=[env.output.cls_dir_asc, filesep, 'Train', env.training_class_run, filesep, 'shp'];
if ~contains(env.inputType, 'Freeman')
warning('Did you account for no data values without using inc band?')
end
if isunix
env.gdal.CACHEMAX = 8000; %~4GB
env.output.train_dir=[env.output.cls_dir_asc, filesep, 'Train', env.training_run, '/'];
else
env.gdal.CACHEMAX = 2000; %~2GB
end
if ismember(env.inputType, {'Freeman','Sinclair', 'Freeman-T3', 'LUT-Freeman'}) %tag: ENV_INPUT_TYPE
env.radar_bands=[1,2,3];
env.inc_band=4;
env.dem_band=NaN;
env.use_inc_band=false; % whether or not to use as feature in classifier
elseif ismember(env.inputType, {'C3', 'T3'})
env.radar_bands=[1:9];
env.inc_band=NaN;
env.dem_band=NaN;
env.use_inc_band=false;
elseif ismember(env.inputType, {'Freeman-inc'})
env.radar_bands=[1,2,3];
env.inc_band=4;
env.dem_band=NaN;
env.use_inc_band=true;
elseif ismember(env.inputType, {'C3-inc'})
env.radar_bands=[1:9];
env.inc_band=10;
env.dem_band=NaN;
env.use_inc_band=true;
elseif strcmp(env.inputType, 'Norm-Fr-C11-inc')
env.radar_bands=[1,2,3,4];
env.inc_band=5;
env.dem_band=NaN;
env.use_inc_band=true;
elseif strcmp(env.inputType, 'gray')
env.radar_bands=[1];
env.inc_band=NaN;
env.dem_band=NaN;
env.use_inc_band=false;
elseif strcmp(env.inputType, 'Sinclair-hgt')
env.radar_bands=[1,2,3];
env.inc_band=NaN;
env.dem_band=4;
env.use_inc_band=false;
else
error(['unrecognized input format:', env.inputType])
end
%% Constant params
if isunix
env.asc.annDir='/att/gpfsfs/atrepo01/data/ORNL/ABoVE_Archive/datapool.asf.alaska.edu/METADATA/UA';
env.asc.parProfile='local'; %'LocalProfile1- EK-ASC';
else
env.asc.annDir='';
end
env.paths.topotoolbox='/home/ekyzivat/scripts/topotoolbox';
%% Load env?
if load_env
uiopen('F:\PAD2019\classification_training\PixelClassifier\*.mat')
env=model.env;
else
%% Image I/O and viewing params
if isunix % on ASC
% addpath
addpath /att/gpfsfs/home/ekyzivat/scripts/random-wetlands/dnafinder-Cohen-a2b974e
addpath /att/gpfsfs/home/ekyzivat/scripts/PixelClassifier-fork
addpath /att/gpfsfs/home/ekyzivat/scripts/random-wetlands
env.output.test_dir=[env.output.cls_dir_asc, filesep, 'Test', env.run, '/'];
env.bulk_plot_dir='/dev/null/';
% viewing image dir
env.viewingImageDir='/att/nobackup/ekyzivat/UAVSAR/Georeferenced/'; % optional
% temp
env.tempDir='/att/nobackup/ekyzivat/PixelClassifierTemp/';
else % on local
% training file output directory
env.output.train_dir=[env.output.cls_dir_local, filesep, 'Train', env.run, '\'];
env.output.test_dir=[env.output.cls_dir_local, filesep, 'Test', env.run, '\'];
% plotting
env.bulk_plot_dir='D:\pic\UAVSAR_classification\';
% viewing image dir
env.viewingImageDir='F:\UAVSAR\Georeferenced\'; % optional
% temp
env.tempDir='F:\PAD2019\classification_training\PixelClassifierTemp\';
end
%% Parse input runfile
if isunix
csv_in=['/att/gpfsfs/home/ekyzivat/scripts/random-wetlands' filesep, 'run_inputs', filesep, 'run_inputs.csv'];
else
csv_in=['D:\Dropbox\Matlab\ABoVE\UAVSAR' filesep, 'run_inputs', filesep, 'run_inputs.csv'];
warning(['CSV in is from:', csv_in])
end
csv=readtable(csv_in);
% csv(1:end-1,:); % delete last info row
xls.data=table2struct(csv);
env.input=xls.data;
for n=1:size(xls.data,1)
% env.input(n).cls_pth=env.class_dir
env.input(n).bb = [xls.data(n).bb_xmin, xls.data(n).bb_ymin,...
xls.data(n).bb_xmax, xls.data(n).bb_ymax];
% % text arguments that are system-dependent
if ~isunix %local
env.input(n).im_dir = env.input(n).im_dir_local;
% env.input(n).cls_pth = env.input(n).cls_pth_local;
env.input(n).cls_pth = [env.class_dir_local, '\', xls.data(n).cls_name];
if isempty(env.input(n).im_dir) % if I didn't specifiy
env.input(n).im_dir= ['F:\UAVSAR\',...
env.input(n).name, filesep];
end
else %ASC
env.input(n).cls_pth = [env.class_dir_asc, '/', xls.data(n).cls_name];
if isempty(env.input(n).im_dir) % if I didn't specifiy
env.input(n).im_dir= ['/att/nobackup/ekyzivat/UAVSAR/asf.alaska.edu/',...
env.input(n).name, filesep];
end
end
end
% model I/O (todo: add smart suffix automatically to avoid overwrite)
env.output.current_model=[env.output.test_dir, 'model.mat'];
env.output.current_training=[env.output.test_dir, 'training.mat'];
% env.viewFileNums=[4];
%% classification training params % tag: common
env.pixelClassifier.use_raw_image=1;
env.pixelClassifier.sigmas=[]; %[1 2 3];
% basic image features are simply derivatives (up to second order) in different scales;
% this parameter specifies such scales (radius of offset); details in imageFeatures.m
% for moving gaussian filter
% each creates 9 features
env.pixelClassifier.offsets=[3]; %[3 5]; %OPTIONAL,
% in pixels; for offset features (see imageFeatures.m)
% each creates 8 ->2 features
% set to [] to ignore offset features
env.pixelClassifier.osSigma = [2]; %2;
% sigma for offset features (std dev of gaussian used for filter)
env.pixelClassifier.radii = [];%[15 20 25]; %OPTIONAL
% range of radii on which to compute circularity features (see imageFeatures.m)
% set to [] to ignore circularity features
env.pixelClassifier.cfSigma = []; %2;
% sigma for circularity features
env.pixelClassifier.logSigmas = [];%[1 2]; %OPTIONAL
% sigmas for LoG features (see imageFeatures.m)
% set to [] to ignore LoG features
env.pixelClassifier.sfSigmas = [];%[1 2]; %OPTIONAL
% steerable filter features sigmas (see imageFeatures.m)
% set to [] to ignore steerable filter features
% ridge (or edge) detection
env.pixelClassifier.nTrees = 40; %20;
% number of decision trees in the random forest ensemble
env.pixelClassifier.minLeafSize = 30; %60;
% minimum number of observations per tree leaf
env.pixelClassifier.pctMaxNPixelsPerLabel = 5; % [1]; % unimportant- I'm way below limit
% percentage of max number of pixels per label (w.r.t. num of pixels in image);
% this puts a cap on the number of training samples and can improve training speed
env.pixelClassifier.textureWindows=[5];
% size of moving window to compute moving std dev
env.pixelClassifier.speckleFilter=[1];
% whether to use diffuse filter (replace with lee refined, if
% desired...)
env.pixelClassifier.gradient_smooth_kernel=[]; %7;
% if > 0, computes max gradient (slope) in 8 directions of DEM band,
% smoothing with a kernel of gradient_smooth_kernel
env.pixelClassifier.tpi_kernel=[]; %7;
% if > 0 , computes the TPI-topographic position index- using kernel
% size tpi_kernel
%% classification params
env.pixelClassifier.run.outputMasks = false;
% if to output binary masks corresponding to pixel classes
env.pixelClassifier.run.outputProbMaps = false;
% if to output probability maps from which output masks are derived
env.pixelClassifier.run.nSubsets = 64; %[50];
% the set of pixels to be classified is split in this many subsets;
% if nSubsets > 1, the subsets are classified using 'parfor' with
% the currently-opened parallel pool (or a new default one if none is open);
% see imClassify.m for details;
% it's recommended to set nSubsets > the number of cores in the parallel pool;
% this can make classification substantially faster than when a
% single thread is used (nSubsets = 1). Divides image into nSubsets
% parts to classify, so numel(F)/nSubsets should fit into memory
% stacked images output
% env.inputType='Freeman-inc'; % DONT FORGET to change line 105 in
% pixelClassifierTrain.m and line 61 in PixelClassifier... to update input Type
% constants
env.constants.imCenter=43; % 49.3 for YF-21508 (used for simple range correction)
env.constants.n=0.5; %1.64; % range correction exponent
env.constants.noDataValue=-10000; %-10000;
env.constants.noDataValue_ouput=0;
%% classes
% set order of classes (defines numerical index, which will be written
% to meta file)
env.class_names={'OW', 'WS', 'WH', 'SB', 'WG', 'DG',...
'DS', 'DF', 'BS', 'DW', 'RW', 'BG', 'WF'}; %{'W1', 'GW', 'GD', 'SW', 'SD', 'FD'}; %, 'TD', 'TW'}; % {'W1', 'W2', 'EU', 'BG', 'HW', 'GW', 'GD', 'SW', 'SD', 'FW', 'FD'}, no BG; {'W1', 'W2', 'BG', 'HW', 'GW', 'GD', 'SW', 'SD', 'FD'}; % < prior to Dec 2
% env.class_names={'W1', 'SW', 'HW', 'BA', 'GW', 'GD',...
% 'SD', 'FD', 'FD2', 'WD', 'W2', 'BG', 'FW'}; %{'W1', 'GW', 'GD', 'SW', 'SD', 'FD'}; %, 'TD', 'TW'}; % {'W1', 'W2', 'EU', 'BG', 'HW', 'GW', 'GD', 'SW', 'SD', 'FW', 'FD'}, no BG; {'W1', 'W2', 'BG', 'HW', 'GW', 'GD', 'SW', 'SD', 'FD'}; % < prior to Dec 2
% env.class_names={'W1', 'GW', 'GD', 'SW', 'SD', 'FD'};
env.class_names_full={'Water', 'Graminoid Wet','Graminoid Dry', 'Shrub Wet', 'Shrub Dry', 'Forest Dry'};
%% colors
env.plot.colors_hex={'BED2FF', '58D918','FFC861','31780D','BF9649','8ACC34'};% NEED to fix color-blindness {'BED2FF','A80000','E69800','38A800', 'A87000', '732600'};
if ~isunix
for i=1:length(env.plot.colors_hex)
env.plot.colors{i}=hex2rgb(env.plot.colors_hex{i});
env.plot.colors_mat(i,:)=hex2rgb(env.plot.colors_hex{i});
env.plot.colors_8bit{i}=255*hex2rgb(env.plot.colors_hex{i});
end
end
%% plots
if env.use_inc_band && isnan(env.dem_band) % if inc band exists
env.plot.bandLabels={'Double','Volume', 'Single', 'Range'};
elseif isnan(env.inc_band) && ~isnan(env.dem_band)
env.plot.bandLabels={'HH', 'HV', 'VV','DEM'};
else
env.plot.bandLabels={'Double','Volume', 'Single'};
end
%% validition set partitioning
env.valPartitionRatio=0.15; % what percentage held back for validation % NOT inverse of ratio between no of training and total (= training + val) pixels
env.seed=22; % random number gen seed!
%% proj source
if ~isunix
env.proj_source='F:\UAVSAR\Georeferenced\proj\102001.prj';
else
env.proj_source='/att/gpfsfs/home/ekyzivat/scripts/proj/102001.prj';
end
end
%% acknowledgements
% matlab file exchange ENVI read/write
%matlab file exchange/github PixelClassifier
% file exhange hex2rgb https://www.mathworks.com/matlabcentral/fileexchange/46289-rgb2hex-and-hex2rgb
% caputre figure vid: https://www.mathworks.com/matlabcentral/fileexchange/41093-create-video-of-rotating-3d-plot